Outer automorphisms of $sl(2)$, integrable systems, and mappings
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 205-216
Voir la notice de l'article provenant de la source Math-Net.Ru
Outer automorphisms of infinite-dimensional representations of the Lie algebra $sl(2)$ are used to construct Lax matrices for integrable Hamiltonian systems and discrete integrable mappings. The known results are reproduced, and new integrable systems are constructed. Classical $r$-matrices corresponding to the Lax representation with the spectral parameter are dynamic. This scheme is advantageous because quantum systems naturally arise in the framework of the classical $r$-matrix Lax representation and the corresponding quantum mechanical problem admits a variable separation.
@article{TMF_1999_118_2_a2,
author = {A. V. Tsiganov},
title = {Outer automorphisms of $sl(2)$, integrable systems, and mappings},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--216},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/}
}
A. V. Tsiganov. Outer automorphisms of $sl(2)$, integrable systems, and mappings. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 205-216. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/