Outer automorphisms of $sl(2)$, integrable systems, and mappings
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 205-216

Voir la notice de l'article provenant de la source Math-Net.Ru

Outer automorphisms of infinite-dimensional representations of the Lie algebra $sl(2)$ are used to construct Lax matrices for integrable Hamiltonian systems and discrete integrable mappings. The known results are reproduced, and new integrable systems are constructed. Classical $r$-matrices corresponding to the Lax representation with the spectral parameter are dynamic. This scheme is advantageous because quantum systems naturally arise in the framework of the classical $r$-matrix Lax representation and the corresponding quantum mechanical problem admits a variable separation.
@article{TMF_1999_118_2_a2,
     author = {A. V. Tsiganov},
     title = {Outer automorphisms of $sl(2)$, integrable systems, and mappings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--216},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Outer automorphisms of $sl(2)$, integrable systems, and mappings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 205
EP  - 216
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/
LA  - ru
ID  - TMF_1999_118_2_a2
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Outer automorphisms of $sl(2)$, integrable systems, and mappings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 205-216
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/
%G ru
%F TMF_1999_118_2_a2
A. V. Tsiganov. Outer automorphisms of $sl(2)$, integrable systems, and mappings. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 205-216. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/