Outer automorphisms of $sl(2)$, integrable systems, and mappings
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 205-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Outer automorphisms of infinite-dimensional representations of the Lie algebra $sl(2)$ are used to construct Lax matrices for integrable Hamiltonian systems and discrete integrable mappings. The known results are reproduced, and new integrable systems are constructed. Classical $r$-matrices corresponding to the Lax representation with the spectral parameter are dynamic. This scheme is advantageous because quantum systems naturally arise in the framework of the classical $r$-matrix Lax representation and the corresponding quantum mechanical problem admits a variable separation.
@article{TMF_1999_118_2_a2,
     author = {A. V. Tsiganov},
     title = {Outer automorphisms of $sl(2)$, integrable systems, and mappings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--216},
     year = {1999},
     volume = {118},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Outer automorphisms of $sl(2)$, integrable systems, and mappings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 205
EP  - 216
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/
LA  - ru
ID  - TMF_1999_118_2_a2
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Outer automorphisms of $sl(2)$, integrable systems, and mappings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 205-216
%V 118
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/
%G ru
%F TMF_1999_118_2_a2
A. V. Tsiganov. Outer automorphisms of $sl(2)$, integrable systems, and mappings. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 205-216. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a2/

[1] Dinamicheskie sistemy – VII, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fund. napravleniya, 16, VINITI, M., 1987

[2] A. V. Tsiganov, J. Math. Phys., 39 (1998), 650 | DOI | MR | Zbl

[3] A. P. Veselov, UMN, 46 (1991), 3 | MR

[4] O. Ragnisco, Phys. Lett. A, 198 (1995), 295 | DOI | MR | Zbl

[5] Z. Qiao, R. Zhou, Phys. Lett. A, 235 (1997), 35 | DOI | MR | Zbl

[6] L. D. Faddeev, G. P. Korchemsky, High energy {QCD} as a completely integrable model, Preprint ITP-SB-94-14, 1994 ; E-print hep-th/9404173 | MR

[7] A. V. Tsiganov, J. Phys. A, 31 (1998), 8049 | DOI | MR | Zbl

[8] A. V. Tsyganov, TMF, 115 (1998), 3 | DOI | MR | Zbl

[9] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[10] P. P. Kulish, S. Rauch-Wojciechowski, A. V. Tsiganov, J. Math. Phys., 37 (1995), 3365 | MR

[11] J. C. Eilbeck, V. Z. Enolskii, V. B. Kuznetsov, A. V. Tsiganov, J. Phys. A, 27 (1994), 567 | DOI | MR | Zbl

[12] E. G. Kalnins, Separation of Variables for Riemann Spaces of Constant Curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific $\$ Technical, New York, 1986 | MR | Zbl

[13] E. K. Sklyanin, Progr. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl