Weyl algebras over quantum groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 190-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The term “Weyl algebras” is proposed for differential algebras associated with dual pairs of Hopf algebras. The principle of complete reducibility for the category of “admissible” modules over Weyl algebras is proved. Comodule structures that connect Weyl algebras with the Drinfeld quantum double are investigated.
@article{TMF_1999_118_2_a1,
     author = {D. P. Zhelobenko},
     title = {Weyl algebras over quantum groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--204},
     year = {1999},
     volume = {118},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a1/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Weyl algebras over quantum groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 190
EP  - 204
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a1/
LA  - ru
ID  - TMF_1999_118_2_a1
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Weyl algebras over quantum groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 190-204
%V 118
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a1/
%G ru
%F TMF_1999_118_2_a1
D. P. Zhelobenko. Weyl algebras over quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 190-204. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a1/

[1] V. G. Drinfeld, Zap. nauchn. semin. LOMI, 155, 1986, 18–49 | Zbl

[2] S. L. Woronowicz, Commun. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[3] S. L. Woronowicz, Commun. Math. Phys., 130 (1990), 381–431 | DOI | MR | Zbl

[4] P. Ashieri, P. Schupp, Vector fields on quantum groups, , 1995 E-print q-alg/9505023

[5] S. P. Novikov, UMN, 47:5 (1992), 189–190 | MR | Zbl

[6] D. P. Zhelobenko, “Differential operators on quantum groups and graded algebras”, Proc. XXI Intern. Coll. “Group Theor. Methods in Physics” (Goslar, 1996), World Sci., Singapore–N. Y.–London, 1998, 7–12 | MR

[7] D. P. Zhelobenko, Izv. RAN. Ser. matem., 62:4 (1998), 25–50 | DOI | MR | Zbl

[8] D. P. Zhelobenko, “New aspects of differential calculus on quantum groups”, Proc. V Wigner Symp. (Wien, 1997), Heron-Press, Sofia, 1997, 254–259

[9] D. P. Zhelobenko, Predstavleniya reduktivnykh algebr Li, Nauka, M., 1994 | MR | Zbl

[10] D. P. Zhelobenko, Vestn. RUDN, 4–5:1 (1997/1998), 51–59 | MR | Zbl

[11] M. Kashiwara, Commun. Math. Phys., 122 (1990), 249–260 | DOI | MR

[12] T. Nakashima, Commun. Math. Phys., 164 (1994), 171–192 | DOI | MR

[13] V. Chary, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR

[14] A. Joseph, Quantum Groups and Their Primitive Ideals, Springer, N.Y., 1995 | MR