@article{TMF_1999_118_2_a1,
author = {D. P. Zhelobenko},
title = {Weyl algebras over quantum groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {190--204},
year = {1999},
volume = {118},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a1/}
}
D. P. Zhelobenko. Weyl algebras over quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 190-204. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a1/
[1] V. G. Drinfeld, Zap. nauchn. semin. LOMI, 155, 1986, 18–49 | Zbl
[2] S. L. Woronowicz, Commun. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl
[3] S. L. Woronowicz, Commun. Math. Phys., 130 (1990), 381–431 | DOI | MR | Zbl
[4] P. Ashieri, P. Schupp, Vector fields on quantum groups, , 1995 E-print q-alg/9505023
[5] S. P. Novikov, UMN, 47:5 (1992), 189–190 | MR | Zbl
[6] D. P. Zhelobenko, “Differential operators on quantum groups and graded algebras”, Proc. XXI Intern. Coll. “Group Theor. Methods in Physics” (Goslar, 1996), World Sci., Singapore–N. Y.–London, 1998, 7–12 | MR
[7] D. P. Zhelobenko, Izv. RAN. Ser. matem., 62:4 (1998), 25–50 | DOI | MR | Zbl
[8] D. P. Zhelobenko, “New aspects of differential calculus on quantum groups”, Proc. V Wigner Symp. (Wien, 1997), Heron-Press, Sofia, 1997, 254–259
[9] D. P. Zhelobenko, Predstavleniya reduktivnykh algebr Li, Nauka, M., 1994 | MR | Zbl
[10] D. P. Zhelobenko, Vestn. RUDN, 4–5:1 (1997/1998), 51–59 | MR | Zbl
[11] M. Kashiwara, Commun. Math. Phys., 122 (1990), 249–260 | DOI | MR
[12] T. Nakashima, Commun. Math. Phys., 164 (1994), 171–192 | DOI | MR
[13] V. Chary, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR
[14] A. Joseph, Quantum Groups and Their Primitive Ideals, Springer, N.Y., 1995 | MR