On derivations of the Heisenberg algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 163-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Derivations of the Heisenberg algebra $\mathcal H$ and some related questions are studied. The ideas and the language of formal differential geometry are used. It is proved that all derivations of this algebra are inner. The main subalgebras of the Lie algebra $\mathfrak D(\mathcal H)$ of all derivations of $\mathcal H$ are distinguished, and their properties are studied. It is shown that the algebra $\mathcal H$ interpreted as a Lie algebra (with the commutator as the Lie bracket) forms a one-dimensional central extension of $\mathfrak D(\mathcal H)$.
@article{TMF_1999_118_2_a0,
     author = {V. V. Zharinov},
     title = {On derivations of the {Heisenberg} algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--189},
     year = {1999},
     volume = {118},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - On derivations of the Heisenberg algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 163
EP  - 189
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a0/
LA  - ru
ID  - TMF_1999_118_2_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T On derivations of the Heisenberg algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 163-189
%V 118
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a0/
%G ru
%F TMF_1999_118_2_a0
V. V. Zharinov. On derivations of the Heisenberg algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 163-189. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a0/

[1] Dzh. Makki, Lektsii po matematicheskim osnovam kvantovoi mekhaniki, Mir, M., 1965 | MR

[2] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov matematikov, Izd-vo LGU, L., 1980 | MR

[3] N. Fleury, A. Turbiner, On polynomial relations in the Heisenberg algebra, , 1994 E-print funct-an/9403002 | MR

[4] A. Turbiner, Invariant identities in the Heisenberg algebra, , 1998 E-print hep-th/9410128 | MR

[5] M. Pillin, On the deformability of Heisenberg algebras, , 1995 E-print q-alg/9508014 | MR

[6] M. Irac-Astaud, A three-parameter deformation of the Weyl–Heisenberg algebra: differential calculus and invariance, , 1996 E-print q-alg/9609008 | MR

[7] B. Abdesselam, The twisted Heisenberg algebra, , 1996 E-print q-alg/9610021 | MR

[8] M. S. Plyushchay, $R$-deformed Heisenberg algebra, , 1997 E-print hep-th/9701065 | MR

[9] A. Connes, Noncommutative geometry, Academic Press, New York, 1994 | MR | Zbl

[10] J. Madore, An introduction to noncommutative differential geometry and its physical applications, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[11] M. Dubois-Violette, R. Kerner, J. Madore, J. Math. Phys., 31:2 (1990), 316 | DOI | MR | Zbl

[12] M. Dubois-Violette, P. W. Michor, J. Geom. Phys., 20 (1996), 218 | DOI | MR | Zbl

[13] T. Masson, J. Math. Phys., 37:5 (1996), 2484 | DOI | MR | Zbl

[14] H.-D. Cao, J. Zhou, On quantum de Rham cohomology, , 1998 E-print DG/9806157 | MR

[15] D. B. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[16] V. V. Zharinov, Integral transforms and special functions, 7:1–2 (1998), 155 | MR

[17] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York, 1950 | MR

[18] I. Kaplansky, An introduction to differential algebra, Hermann, Paris, 1957 | MR | Zbl

[19] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[20] V. V. Zharinov, Lecture notes on geometrical aspects of partial differential equations, World Scientific, Singapore, 1992 | MR | Zbl

[21] S. Maklein, Gomologiya, Mir, M., 1966

[22] M. A. Naimark, Teoriya predstavlenii grupp, Nauka, M., 1976 | MR

[23] D. P. Zhelobenko, Lektsii po teorii grupp Li, OIYaI, Dubna, 1965