On the Wilson criterion
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 67-73
Cet article a éte moissonné depuis la source Math-Net.Ru
The $U(1)$-gauge theory with the Villain action is considered in a cubic lattice approximation of three- and four-dimensional tori. As the lattice spacing tends to zero, the naturally defined correlation functions converge to the correlation functions of the $\mathbf R$-gauge electrodynamics on three- and four-dimensional tori only for a special scaling, which depends on the correlation functions. Another scaling gives degenerate continuum limits. The Wilson criterion for the confinement of charged particles is fulfilled for the $\mathbf R$-gauge electrodynamics on a torus. If the radius of the initial torus tends to infinity, then the correlation functions converge to the correlation functions of the $\mathbf R$-gauge Euclidean electrodynamics.
@article{TMF_1999_118_1_a4,
author = {Yu. M. Zinoviev},
title = {On the {Wilson} criterion},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {67--73},
year = {1999},
volume = {118},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a4/}
}
Yu. M. Zinoviev. On the Wilson criterion. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a4/
[1] K. G. Wilson, Phys. Rev. D, 10 (1974), 2445–2459 | DOI
[2] J. Villain, J. Phys., 36 (1975), 581–590 | DOI
[3] Yu. M. Zinovev, TMF, 43 (1980), 309–322 | MR
[4] Yu. M. Zinoviev, Commun. Math. Phys., 168 (1995), 227–247 | DOI | MR | Zbl
[5] Yu. M. Zinovev, TMF, 49 (1981), 156–163 | MR
[6] Yu. M. Zinovev, TMF, 50 (1982), 207–220 | MR