On the Wilson criterion
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 67-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $U(1)$-gauge theory with the Villain action is considered in a cubic lattice approximation of three- and four-dimensional tori. As the lattice spacing tends to zero, the naturally defined correlation functions converge to the correlation functions of the $\mathbf R$-gauge electrodynamics on three- and four-dimensional tori only for a special scaling, which depends on the correlation functions. Another scaling gives degenerate continuum limits. The Wilson criterion for the confinement of charged particles is fulfilled for the $\mathbf R$-gauge electrodynamics on a torus. If the radius of the initial torus tends to infinity, then the correlation functions converge to the correlation functions of the $\mathbf R$-gauge Euclidean electrodynamics.
@article{TMF_1999_118_1_a4,
     author = {Yu. M. Zinoviev},
     title = {On the {Wilson} criterion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {67--73},
     year = {1999},
     volume = {118},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a4/}
}
TY  - JOUR
AU  - Yu. M. Zinoviev
TI  - On the Wilson criterion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 67
EP  - 73
VL  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a4/
LA  - ru
ID  - TMF_1999_118_1_a4
ER  - 
%0 Journal Article
%A Yu. M. Zinoviev
%T On the Wilson criterion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 67-73
%V 118
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a4/
%G ru
%F TMF_1999_118_1_a4
Yu. M. Zinoviev. On the Wilson criterion. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a4/

[1] K. G. Wilson, Phys. Rev. D, 10 (1974), 2445–2459 | DOI

[2] J. Villain, J. Phys., 36 (1975), 581–590 | DOI

[3] Yu. M. Zinovev, TMF, 43 (1980), 309–322 | MR

[4] Yu. M. Zinoviev, Commun. Math. Phys., 168 (1995), 227–247 | DOI | MR | Zbl

[5] Yu. M. Zinovev, TMF, 49 (1981), 156–163 | MR

[6] Yu. M. Zinovev, TMF, 50 (1982), 207–220 | MR