Continuum limit in the fermionic hierarchical model
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 40-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the problem of rigorously constructing the continuum limit in the fermionic hierarchical model. The continuum limit constructed as the limit of fields on the refined hierarchical lattices is a field on a $p$-adic continuum. We investigate the problem of reconstructing the coupling constants of the continuum model from the coupling constants of the discretized model.
@article{TMF_1999_118_1_a2,
     author = {M. D. Missarov},
     title = {Continuum limit in the fermionic hierarchical model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {40--50},
     year = {1999},
     volume = {118},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a2/}
}
TY  - JOUR
AU  - M. D. Missarov
TI  - Continuum limit in the fermionic hierarchical model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 40
EP  - 50
VL  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a2/
LA  - ru
ID  - TMF_1999_118_1_a2
ER  - 
%0 Journal Article
%A M. D. Missarov
%T Continuum limit in the fermionic hierarchical model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 40-50
%V 118
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a2/
%G ru
%F TMF_1999_118_1_a2
M. D. Missarov. Continuum limit in the fermionic hierarchical model. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 40-50. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a2/

[1] E. Yu. Lerner, M. D. Missarov, TMF, 78:2 (1989), 248 | MR

[2] E. Yu. Lerner, M. D. Missarov, Commun. Math. Phys., 121 (1989), 35 | DOI | MR | Zbl

[3] P. M. Bleher, Ya. G. Sinai, Commun. Math. Phys., 33 (1973), 23 | DOI | MR

[4] P. Collet, J.-P. Eckmann, A renormalization group analysis of the hierarchical model in statistical mechanics, Springer, Berlin–Heidelberg–New York, 1978 | MR

[5] Ya. G. Sinai, Teoriya fazovykh perekhodov: Strogie rezultaty, Nauka, M., 1980 | MR

[6] P. M. Bleher, P. Major, Ann. Prob., 15 (1987), 431 | DOI | MR | Zbl

[7] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[8] L. Brekke, P. G. O. Freund, Phys. Rep., 233 (1993), 1 | DOI | MR

[9] E. Yu. Lerner, M. D. Missarov, J. Stat. Phys., 76:3/4 (1994), 805 | DOI | MR | Zbl

[10] E. Yu. Lerner, M. D. Missarov, TMF, 107:2 (1996), 201 | DOI | MR | Zbl

[11] M. D. Missarov, TMF, 114:3 (1998), 323 | DOI | MR | Zbl

[12] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki, Mir, M., 1984 | MR

[13] K. Gawedski, A. Kupiainen, Commun. Math. Phys., 99 (1985), 197 | DOI | MR

[14] K. Gawedski, A. Kupiainen, Commun. Math. Phys., 102 (1985), 1 | DOI | MR

[15] J. Feldman, J. Magnen, V. Rivasseu, R. Seneor, Commun. Math. Phys., 103 (1986), 67 | DOI | Zbl

[16] T. C. Dorlas, Commun. Math. Phys., 136 (1991), 169 | DOI | MR | Zbl

[17] M. D. Missarov, Lett. Math. Phys., 32 (1994), 347 | DOI | MR | Zbl

[18] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[19] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR