Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 15-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The discrete spectrum of multiparticle Hamiltonians $H_0$ of neutral systems in a homogeneous magnetic field is studied at a fixed pseudomoment. A general theorem is proved, which describes the discrete spectrum of $H_0$ under certain conditions in terms of constructed effective one-dimensional differential operators with a known spectrum structure. Based on this theorem, the conditions for a finite or infinite spectrum and the spectral asymptotic forms of the operator $H_0$ are obtained. The results can be applied to Hamiltonians of any atoms.
@article{TMF_1999_118_1_a1,
     author = {G. M. Zhislin},
     title = {Spectral properties of {Hamiltonians} with a magnetic field at a fixed {pseudomoment.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--39},
     year = {1999},
     volume = {118},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 15
EP  - 39
VL  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/
LA  - ru
ID  - TMF_1999_118_1_a1
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 15-39
%V 118
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/
%G ru
%F TMF_1999_118_1_a1
G. M. Zhislin. Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 15-39. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/

[1] S. A. Vugalter, G. M. Zhislin, TMF, 113:3 (1997), 413–431 | DOI | MR | Zbl

[2] S. A. Vugalter, Chastnoe soobschenie

[3] S. A. Vugalter, G. M. Zhislin, Algebra i analiz, 3:6 (1991), 119–154 | MR | Zbl

[4] S. A. Vugalter, G. M. Zhislin, Algebra i analiz, 5:2 (1993), 108–125 | MR | Zbl

[5] S. A. Vugalter, G. M. Zhislin, Tr. Mosk. matem. ob-va, 54, 1992, 186–212 | Zbl

[6] V. Ya. Ivrii, DAN SSSR, 276:2 (1984), 268–270 | MR | Zbl

[7] W. Kirsch, B. Simon, Ann. Phys., 183:1 (1988), 122–130 | DOI | MR | Zbl

[8] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, IL, M., 1954 | MR

[9] G. M. Zhislin, Algebra i analiz, 8:1 (1996), 127–136 | MR

[10] J. E. Avron, J. W. Herbst, B. Simon, Ann. Phys., 114 (1978), 431 | DOI | MR | Zbl

[11] M. A. Antonets, G. M. Zhislin, I. A. Shereshevskii, “O diskretnom spektre mnogochastichnykh gamiltonianov”, Prilozhenie k kn.: K. Iorgens, I. Vaidmann, Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976 | MR

[12] G. M. Zhislin, TMF, 107:3 (1996), 372–387 | DOI | MR | Zbl

[13] S. A. Vugalter, G. M. Zhislin, TMF, 97:1 (1993), 94–112 | MR | Zbl

[14] G. M. Zhislin, Izv. AN SSSR. Ser. matem., 33 (1969), 560–649