Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment.~II
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 15-39
Voir la notice de l'article provenant de la source Math-Net.Ru
The discrete spectrum of multiparticle Hamiltonians $H_0$ of neutral systems in a homogeneous magnetic field is studied at a fixed pseudomoment. A general theorem is proved, which describes the discrete spectrum of $H_0$ under certain conditions in terms of constructed effective one-dimensional differential operators with a known spectrum structure. Based on this theorem, the conditions for a finite or infinite spectrum and the spectral asymptotic forms of the operator $H_0$ are obtained. The results can be applied to Hamiltonians of any atoms.
@article{TMF_1999_118_1_a1,
author = {G. M. Zhislin},
title = {Spectral properties of {Hamiltonians} with a magnetic field at a fixed {pseudomoment.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {15--39},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/}
}
TY - JOUR AU - G. M. Zhislin TI - Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment.~II JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 15 EP - 39 VL - 118 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/ LA - ru ID - TMF_1999_118_1_a1 ER -
G. M. Zhislin. Spectral properties of Hamiltonians with a magnetic field at a fixed pseudomoment.~II. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 15-39. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a1/