On the spectrum of the two-dimensional periodic Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absolute continuity of the Dirac operator spectrum in $\mathbf R^2$ with the scalar potential $V$ and the vector potential $A=(A_1,A_2)$ being periodic functions $($with a common period lattice$)$ such that $V,A_j\in L^q_{\operatorname{loc}}(\mathbf R^2)$, $q>2$.
@article{TMF_1999_118_1_a0,
     author = {L. I. Danilov},
     title = {On the spectrum of the two-dimensional periodic {Dirac} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of the two-dimensional periodic Dirac operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 3
EP  - 14
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/
LA  - ru
ID  - TMF_1999_118_1_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of the two-dimensional periodic Dirac operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 3-14
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/
%G ru
%F TMF_1999_118_1_a0
L. I. Danilov. On the spectrum of the two-dimensional periodic Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/