On the spectrum of the two-dimensional periodic Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the absolute continuity of the Dirac operator spectrum in $\mathbf R^2$ with the scalar potential $V$ and the vector potential $A=(A_1,A_2)$ being periodic functions $($with a common period lattice$)$ such that $V,A_j\in L^q_{\operatorname{loc}}(\mathbf R^2)$, $q>2$.
@article{TMF_1999_118_1_a0,
     author = {L. I. Danilov},
     title = {On the spectrum of the two-dimensional periodic {Dirac} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     year = {1999},
     volume = {118},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On the spectrum of the two-dimensional periodic Dirac operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 3
EP  - 14
VL  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/
LA  - ru
ID  - TMF_1999_118_1_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On the spectrum of the two-dimensional periodic Dirac operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 3-14
%V 118
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/
%G ru
%F TMF_1999_118_1_a0
L. I. Danilov. On the spectrum of the two-dimensional periodic Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR

[2] L. I. Danilov, TMF, 103:1 (1995), 3–22 | MR | Zbl

[3] I. M. Gelfand, DAN SSSR, 73:6 (1950), 1117–1120 | MR | Zbl

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[5] L. E. Thomas, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR

[6] L. I. Danilov, TMF, 85:1 (1990), 41–53 | MR | Zbl

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[8] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 9:1 (1997), 32–48 | MR | Zbl

[9] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, III, Dep. v VINITI 10.07.92. No 2252-V92, VINITI, M., 1992

[10] L. I. Danilov, O spektre operatora Diraka s periodicheskim potentsialom, Preprint, FTI UrO AN SSSR, Sverdlovsk, 1987

[11] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, VI, Dep. v VINITI 31.12.96. No 3855-V96, VINITI, M., 1996

[12] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[13] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, I, Dep. v VINITI 12.12.91. No 4588-V91, VINITI, M., 1991

[14] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, IV, Dep. v VINITI 31.01.95. No 264-V95, VINITI, M., 1995