On the spectrum of the two-dimensional periodic Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the absolute continuity of the Dirac operator spectrum in $\mathbf R^2$ with the scalar potential $V$ and the vector potential $A=(A_1,A_2)$ being periodic functions $($with a common period lattice$)$ such that $V,A_j\in L^q_{\operatorname{loc}}(\mathbf R^2)$, $q>2$.
@article{TMF_1999_118_1_a0,
author = {L. I. Danilov},
title = {On the spectrum of the two-dimensional periodic {Dirac} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--14},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/}
}
L. I. Danilov. On the spectrum of the two-dimensional periodic Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_1999_118_1_a0/