Uncertainty relation for multidimensional correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 427-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Partially coherent fields (mixed states) described by correlation functions (density matrices) are considered. The lower bound for the product of the uncertainties in the wave spatial localization and in its Fourier transform localization is obtained as a function of the space dimensionality. For the state with minimum uncertainty, it is shown that increasing the dimensionality leads to decreasing the phase volume corresponding to one mode in the canonical distribution of the correlation function as compared with the phase volume in the case of a coherent field (pure state).
@article{TMF_1998_117_3_a7,
     author = {N. V. Karelin and A. M. Lazaruk},
     title = {Uncertainty relation for multidimensional correlation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {427--434},
     year = {1998},
     volume = {117},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a7/}
}
TY  - JOUR
AU  - N. V. Karelin
AU  - A. M. Lazaruk
TI  - Uncertainty relation for multidimensional correlation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 427
EP  - 434
VL  - 117
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a7/
LA  - ru
ID  - TMF_1998_117_3_a7
ER  - 
%0 Journal Article
%A N. V. Karelin
%A A. M. Lazaruk
%T Uncertainty relation for multidimensional correlation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 427-434
%V 117
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a7/
%G ru
%F TMF_1998_117_3_a7
N. V. Karelin; A. M. Lazaruk. Uncertainty relation for multidimensional correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 427-434. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a7/

[1] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR

[2] A. Papulis, Teoriya sistem i preobrazovanii v optike, Mir, M., 1971

[3] M. J. Bastiaans, Opt. Acta, 28 (1981), 1215 | DOI | MR

[4] M. J. Bastiaans, J. Opt. Soc. Amer., 72 (1982), 1441 | DOI

[5] M. J. Bastiaans, J. Opt. Soc. Amer., 73 (1983), 251 | DOI | MR

[6] L. D. Landau, E. M. Livshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR

[7] B. R. Levin, Teoreticheskie osnovy statisticheskoi radiotekhniki, Radio i svyaz, M., 1989 | MR | Zbl

[8] H. Gamo, “Matrix treatment of coherence”, Progress in Optics, 3, ed. E. Wolf, North-Holland, Amsterdam, 1964, 1 | DOI

[9] E. Wolf, J. Opt. Soc. Amer., 72 (1982), 343 | DOI | MR

[10] N. V. Karelin, A. M. Lazaruk, Izv. vuzov. Radiofizika, 40 (1997), 903

[11] R. Feinman, Statisticheskaya mekhanika, Mir, M., 1978

[12] L. D. Landau, E. M. Livshits, Statisticheskaya fizika, ch. I, Nauka, M., 1974

[13] V. V. Dodonov, V. I. Manko, Trudy FIAN, 183 (1987), 5

[14] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR

[15] V. I. Levin, DAN SSSR, 59 (1948), 635 | Zbl

[16] D. S. Mitrinović, Analytic inequalities, Springer-Verlag, Berlin, 1970 | MR | Zbl