Human memory as a $p$-adic dynamic system
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 385-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mathematical model of the human memory-retrieval process based on dynamic systems over a metric space of $p$-adic numbers. The elements of this space represent ideas. We assume that two ideas are close if they have a sufficiently long initial segment in common. We also assume that this dynamic system is located in the subconscious and is controlled by the conscious, which specifies the system parameters and provides the ideas that initiate the iteration of the dynamic system. We show that even simple $p$-adic dynamic systems describe essential features of the human memory-retrieval process.
@article{TMF_1998_117_3_a4,
     author = {S. A. Albeverio and P. E. Kloeden and A. Yu. Khrennikov},
     title = {Human memory as a~$p$-adic dynamic system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {385--396},
     year = {1998},
     volume = {117},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a4/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - P. E. Kloeden
AU  - A. Yu. Khrennikov
TI  - Human memory as a $p$-adic dynamic system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 385
EP  - 396
VL  - 117
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a4/
LA  - ru
ID  - TMF_1998_117_3_a4
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A P. E. Kloeden
%A A. Yu. Khrennikov
%T Human memory as a $p$-adic dynamic system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 385-396
%V 117
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a4/
%G ru
%F TMF_1998_117_3_a4
S. A. Albeverio; P. E. Kloeden; A. Yu. Khrennikov. Human memory as a $p$-adic dynamic system. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 385-396. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a4/

[1] A. Yu. Khrennikov, The description of brain's functioning by the $p$-adic dynamical systems, Preprint Ruhr University, SFB–237, No 355, Bochum, 1997 | MR

[2] W. Schikhov, Ultrametric Calculus, Cambridge Univ. Press, Cambridge, 1984 | MR

[3] K. Hensel, Jahresbericht der Deutschen Matematischen Vereinigung, 6:1 (1897), 83–88

[4] Z. I. Borevich, I. R. Shafarevich, Number Theory, Academic Press, New York, 1966 | MR | Zbl

[5] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[6] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[7] S. Albeverio, A. Yu. Khrennikov, TMF, 112:3 (1997), 355–374 | DOI | MR | Zbl

[8] S. Albeverio, A. Yu. Khrennikov, J. Phys. A, 29 (1996), 5515–5527 | DOI | MR | Zbl

[9] S. Albeverio, A. Yu. Khrennikov, S. De Smedt, B. Tirozzi, $p$-Adic dynamical systems, Preprint Bochum University, SFB–237, No 369; С. Альбеверио, А. Ю. Хренников, ТМФ, 114:3 (1998), 349–365 | DOI | MR | Zbl

[10] R. Cianci, A. Yu. Khrennikov, Phys. Lett. B, 328:1/2 (1994), 109–112 | DOI | MR | Zbl

[11] B. Dragovic, “Adelic wave function of the universe”, Proc. 3rd A. Friedmann Intern. Seminar on Grav. Cosmology, St. Peterburg Univ. Press, St. Peterburg, 1995

[12] P. G. O. Freund, M. Olson, Phys. Lett. B, 199 (1987), 186–190 | DOI | MR

[13] P. G. O. Freund, E. Witten, Phys. Lett. B, 199 (1987), 191–195 | DOI | MR

[14] Yu. Manin, Springer Lecture Notes in Math., 1111, 1985, 59–101 | DOI | MR | Zbl

[15] V. S. Vladimirov, I. V. Volovich, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[16] A. Yu. Khrennikov, TMF, 97:3 (1993), 348–363 | MR | Zbl

[17] A. Yu. Khrennikov, “$p$-Adic description of chaos”, Proc. of Workshop “Nonlinear Physics: theory and experiment” (Gallipoli, Italy, 1995), eds. E. Alfinito, M. Boti et al., World Scientific Publ., Singapore, 1996, 177–184 | MR | Zbl

[18] A. Yu. Khrennikov, A $p$-adic behaviour of the standard dynamical systems, Preprint Ruhr University, SFB–237, No 290, Bochum, 1995 | MR

[19] A. Yu. Khrennikov, $p$-Adic model for population growth, Preprint Ruhr University Bochum SFB–237, No 315, 1996

[20] A. Yu. Khrennikov, “The estimate of Kolmogorov complexity of $p$-adic random sequences”, Proc. Inter. Conf. “1200 years of Science in Central Europe”, Aachen-Verlag, Aachen, 1997, 124–134 | MR

[21] H.-O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals, Springer-Verlag, New York, 1992 | MR