Functional tetrahedron equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 370-384
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a method for constructing classical integrable models in a $(2+1)$-dimensional discrete space–time based on the functional tetrahedron equation, an equation that makes the symmetries of a model obvious in a local form. We construct a very general “block-matrix model”, find its algebraic-geometric solutions, and study its various particular cases. We also present a remarkably simple quantization scheme for one of those cases.
@article{TMF_1998_117_3_a3,
author = {R. M. Kashaev and I. G. Korepanov and S. M. Sergeev},
title = {Functional tetrahedron equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {370--384},
publisher = {mathdoc},
volume = {117},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a3/}
}
R. M. Kashaev; I. G. Korepanov; S. M. Sergeev. Functional tetrahedron equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 370-384. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a3/