@article{TMF_1998_117_3_a3,
author = {R. M. Kashaev and I. G. Korepanov and S. M. Sergeev},
title = {Functional tetrahedron equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {370--384},
year = {1998},
volume = {117},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a3/}
}
R. M. Kashaev; I. G. Korepanov; S. M. Sergeev. Functional tetrahedron equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 370-384. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a3/
[1] V. V. Bazhanov, Yu. G. Stroganov, TMF, 52 (1982), 105–113 | MR
[2] J. Hietarinta, J. Phys. A, 27 (1994), 5727–5748 ; Labeling schemes for tetrahedron equations and dualities between them, E-print hep-th/9402139 | DOI | MR | Zbl
[3] I. G. Korepanov, Algebraic integrable dynamical systems, $(2+1)$-dimensional models in wholly discrete space-time, and inhomogeneous models in $2$-dimensional statistical physics, , 1995 E-print solv-int/9506003
[4] S. M. Sergeev, Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric, E-print solv-int/9709006 | MR
[5] R. M. Kashaev and S. M. Sergeev, Commun. Math. Phys., 195 (1998), 309–319 ; On pentagon, ten-term, and tetrahedron relations, E-print q-alg/9607032 | DOI | MR | Zbl
[6] R. M. Kashaev, Lett. Math. Phys., 35 (1996), 389–397 ; On discrete 3-dimensional equations associated with the local Yang–Baxter relation, E-print solv-int/9512005 | DOI | MR
[7] T. Miwa, Proc. Japan Acad. Ser. A, 58 (1982), 9–12 | DOI | MR | Zbl
[8] I. G. Korepanov, Integrability in $3+1$ dimensions: relaxing a tetrahedron relation, E-print solv-int/9712006