Cohomological structure of the conformal anomaly
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 351-363

Voir la notice de l'article provenant de la source Math-Net.Ru

A cohomological classification of conformal anomalies in the dimension $D=6$ is given. Different anomaly classes have a common origin from the cohomological standpoint, being equivalent to the Euler density $E_6$. The descent equation technique is developed for conformal anomalies by analogy with gauge theories. All highest cocycles of the Weyl group are investigated. The general technique for constructing all conformal anomalies from the Weyl density $E_{2n}$ in arbitrary space-time dimensions is presented. The principal difference between structures of these anomalies in dimensions $D=4$ and $D=6$ is demonstrated. A conformally invariant operator (constructed from Riemann and Ricci tensors, scalar curvature, and covariant derivatives) acting on a scalar with zero conformal weight is absent in $D=6$.
@article{TMF_1998_117_3_a1,
     author = {T. A. Arakelyan},
     title = {Cohomological structure of the conformal anomaly},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {351--363},
     publisher = {mathdoc},
     volume = {117},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a1/}
}
TY  - JOUR
AU  - T. A. Arakelyan
TI  - Cohomological structure of the conformal anomaly
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 351
EP  - 363
VL  - 117
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a1/
LA  - ru
ID  - TMF_1998_117_3_a1
ER  - 
%0 Journal Article
%A T. A. Arakelyan
%T Cohomological structure of the conformal anomaly
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 351-363
%V 117
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a1/
%G ru
%F TMF_1998_117_3_a1
T. A. Arakelyan. Cohomological structure of the conformal anomaly. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 351-363. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a1/