Yang--Mills--Higgs soliton dynamics in $2+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 339-350

Voir la notice de l'article provenant de la source Math-Net.Ru

Dimensional reduction of the self-dual Yang–Mills equation in $2+2$ dimensions produces an integrable Yang–Mills–Higgs–Bogomolnyi equation in $2+1$ dimensions. For the ${\mathrm SU}(1,1)$ gauge group, a t'Hooft-like ansatz is used to construct a monopole-like solution and an $N$-soliton-type solution, which describes both the static deformed monopoles and the exotic monopole dynamics including a transmutation. How the monopole solution results from the twistor formalism is shown. Multimonopole solutions are commented on.
@article{TMF_1998_117_3_a0,
     author = {B. S. Getmanov and P. M. Sutcliffe},
     title = {Yang--Mills--Higgs soliton dynamics in $2+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--350},
     publisher = {mathdoc},
     volume = {117},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/}
}
TY  - JOUR
AU  - B. S. Getmanov
AU  - P. M. Sutcliffe
TI  - Yang--Mills--Higgs soliton dynamics in $2+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 339
EP  - 350
VL  - 117
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/
LA  - ru
ID  - TMF_1998_117_3_a0
ER  - 
%0 Journal Article
%A B. S. Getmanov
%A P. M. Sutcliffe
%T Yang--Mills--Higgs soliton dynamics in $2+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 339-350
%V 117
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/
%G ru
%F TMF_1998_117_3_a0
B. S. Getmanov; P. M. Sutcliffe. Yang--Mills--Higgs soliton dynamics in $2+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 339-350. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/