Yang–Mills–Higgs soliton dynamics in $2+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 339-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dimensional reduction of the self-dual Yang–Mills equation in $2+2$ dimensions produces an integrable Yang–Mills–Higgs–Bogomolnyi equation in $2+1$ dimensions. For the ${\mathrm SU}(1,1)$ gauge group, a t'Hooft-like ansatz is used to construct a monopole-like solution and an $N$-soliton-type solution, which describes both the static deformed monopoles and the exotic monopole dynamics including a transmutation. How the monopole solution results from the twistor formalism is shown. Multimonopole solutions are commented on.
@article{TMF_1998_117_3_a0,
     author = {B. S. Getmanov and P. M. Sutcliffe},
     title = {Yang{\textendash}Mills{\textendash}Higgs soliton dynamics in $2+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--350},
     year = {1998},
     volume = {117},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/}
}
TY  - JOUR
AU  - B. S. Getmanov
AU  - P. M. Sutcliffe
TI  - Yang–Mills–Higgs soliton dynamics in $2+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 339
EP  - 350
VL  - 117
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/
LA  - ru
ID  - TMF_1998_117_3_a0
ER  - 
%0 Journal Article
%A B. S. Getmanov
%A P. M. Sutcliffe
%T Yang–Mills–Higgs soliton dynamics in $2+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 339-350
%V 117
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/
%G ru
%F TMF_1998_117_3_a0
B. S. Getmanov; P. M. Sutcliffe. Yang–Mills–Higgs soliton dynamics in $2+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 3, pp. 339-350. http://geodesic.mathdoc.fr/item/TMF_1998_117_3_a0/

[1] N. S. Manton, Phys. Rev. Lett. B, 60 (1988), 1916 | DOI

[2] M. F. Atiyah, N. J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Princeton University Press, Princeton, 1988 | MR | Zbl

[3] G. W. Gibbons, N. S. Manton, Nucl. Phys. B, 274 (1986), 183 | DOI | MR

[4] R. S. Ward, Phil. Trans. R Soc. A, 315 (1985), 451 | DOI | MR | Zbl

[5] R. S. Ward, Nonlinearity, 1 (1988), 671 | DOI | MR | Zbl

[6] P. M. Sutcliffe, J. Math. Phys., 33 (1992), 2269 | DOI | MR | Zbl

[7] N. S. Manton, Nucl. Phys. B, 135 (1978), 319 | DOI

[8] E. F. Corrigan, D. B. Fairlie, Phys. Lett., 67 (1977), 69 | DOI | MR

[9] G. 't Hooft, unpublished

[10] F. Wilczek, Quark confinement and field theory, eds. D. Stump and D. Weingarten, John Wiley, New York, 1977

[11] E. Witten, Phys. Rev. Lett., 38 (1977), 121 | DOI

[12] H. Boutaleb-Joutei, A. Chakrabarti, A. Comtet, Phys. Rev. D, 23 (1981), 1781 | DOI | MR

[13] P. M. Sutcliffe, Instanton chains with soliton limits

[14] R. S. Ward, J. Math. Phys., 30 (1989), 2246 | DOI | MR | Zbl

[15] P. M. Sutcliffe, Yang–Mills–Higgs solitons in (2+1)-dimensions

[16] B. S. Getmanov, Phys. Lett. B, 244 (1990), 455 | DOI | MR

[17] G. Arfken, Mathematical methods for physicists, Academic Press, New York, 1985 | MR

[18] R. S. Ward, R. O. Wells, Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[19] N. J. Hitchin, Commun. Math. Phys., 83 (1982), 579 | DOI | MR | Zbl

[20] R. S. Ward, Commun. Math. Phys., 128 (1990), 319 | DOI | MR | Zbl

[21] M. F. Atiyah, R. S. Ward, Commun. Math. Phys., 55 (1977), 117 | DOI | MR | Zbl

[22] R. S. Ward, Commun. Math. Phys., 79 (1981), 317 | DOI | MR

[23] R. S. Ward, Phys. Lett. B, 102 (1981), 136 | DOI | MR

[24] E. F. Corrigan, P. Goddard, Commun. Math. Phys., 80 (1981), 575 | DOI | MR

[25] R. K. Bullof, B. S. Getmanov, P. M. Satkliff, TMF, 99 (1994), 201