Double-periodic solutions in an essentially nonlinear one-dimensional field model
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 2, pp. 300-307
Cet article a éte moissonné depuis la source Math-Net.Ru
The existence of double-periodic solutions in the one-dimensional $(1+1)$ $\varphi^4$-model is shown numerically, and the dispersion law for the corresponding nonlinear waves is found.
@article{TMF_1998_117_2_a8,
author = {P. K. Silaev and O. A. Khrustalev},
title = {Double-periodic solutions in an essentially nonlinear one-dimensional field model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {300--307},
year = {1998},
volume = {117},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a8/}
}
TY - JOUR AU - P. K. Silaev AU - O. A. Khrustalev TI - Double-periodic solutions in an essentially nonlinear one-dimensional field model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 300 EP - 307 VL - 117 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a8/ LA - ru ID - TMF_1998_117_2_a8 ER -
P. K. Silaev; O. A. Khrustalev. Double-periodic solutions in an essentially nonlinear one-dimensional field model. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 2, pp. 300-307. http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a8/
[1] N. N. Bogolyubov, UMZh, 2 (1950), 3 | MR
[2] E. P. Solodovnikova, A. N. Tavkhelidze, O. A. Khrustalev, TMF, 10 (1972), 162 ; 11, 317 ; 12 (1973), 164
[3] O. A. Khrustalev, A. V. Razumov, A. Yu. Taranov, Nucl. Phys. B, 172 (1980), 44 | DOI | MR
[4] K. A. Sveshnikov, P. K. Silaev, O. A. Khrustalev, TMF, 80 (1989), 173 | MR
[5] O. A. Khrustalev, M. V. Chichikina, TMF, 111 (1997), 242 | DOI | MR | Zbl
[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in $C$, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[7] P. Anninos, S. Oliveira, R. A. Matzner, Phys. Rev. D, 44 (1991), 1147 | DOI | MR