Electric dipole in a~magnetic field: Bound states without classical turning points
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 2, pp. 189-205
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that both rigid and nonrigid dipoles can be trapped by an uniform external magnetic field in classical mechanics. The trapped states of the dipole present a nontrivial example of classical bound states embedded in a continuum (BSEC) that can be treated as analogues of quantum BSECs. For example, the classical motion of the dipole is confined to a finite region in space although there are no classical turning points. We also examine the quantum motion of the dipole in a magnetic field and show that for the most natural choices of the parameters, no quantum BSEC solutions exist. The possibilities of experimental investigations of BSECs are discussed.
@article{TMF_1998_117_2_a2,
author = {D. L. Pursey and N. A. Sveshnikov and A. M. Shirokov},
title = {Electric dipole in a~magnetic field: {Bound} states without classical turning points},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {189--205},
publisher = {mathdoc},
volume = {117},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a2/}
}
TY - JOUR AU - D. L. Pursey AU - N. A. Sveshnikov AU - A. M. Shirokov TI - Electric dipole in a~magnetic field: Bound states without classical turning points JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 189 EP - 205 VL - 117 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a2/ LA - ru ID - TMF_1998_117_2_a2 ER -
%0 Journal Article %A D. L. Pursey %A N. A. Sveshnikov %A A. M. Shirokov %T Electric dipole in a~magnetic field: Bound states without classical turning points %J Teoretičeskaâ i matematičeskaâ fizika %D 1998 %P 189-205 %V 117 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a2/ %G ru %F TMF_1998_117_2_a2
D. L. Pursey; N. A. Sveshnikov; A. M. Shirokov. Electric dipole in a~magnetic field: Bound states without classical turning points. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 2, pp. 189-205. http://geodesic.mathdoc.fr/item/TMF_1998_117_2_a2/