One-loop effective action for the gauge field in curved space–time
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 1, pp. 123-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the one-loop contribution of gluon fluctuations to the gauge-field effective action in a constant homogeneous Abelian-like external (background) field in a space with nonzero curvature. We calculate the real and imaginary parts of the effective action and show that the chromomagnetic vacuum remains unstable in spite of the finite curvature of the space.
@article{TMF_1998_117_1_a4,
     author = {V. Ch. Zhukovskii and I. V. Mamsurov},
     title = {One-loop effective action for the gauge field in curved space{\textendash}time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {123--129},
     year = {1998},
     volume = {117},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a4/}
}
TY  - JOUR
AU  - V. Ch. Zhukovskii
AU  - I. V. Mamsurov
TI  - One-loop effective action for the gauge field in curved space–time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 123
EP  - 129
VL  - 117
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a4/
LA  - ru
ID  - TMF_1998_117_1_a4
ER  - 
%0 Journal Article
%A V. Ch. Zhukovskii
%A I. V. Mamsurov
%T One-loop effective action for the gauge field in curved space–time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 123-129
%V 117
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a4/
%G ru
%F TMF_1998_117_1_a4
V. Ch. Zhukovskii; I. V. Mamsurov. One-loop effective action for the gauge field in curved space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a4/

[1] G. K. Savvidy, Phys. Lett. B, 71 (1977), 133 | DOI

[2] N. K. Nielson, P. Olesen, Nucl. Phys. B, 144 (1976), 376 | DOI | MR

[3] A. A. Sokolov, I. M. Ternov, V. Ch. Zhukovskii, A. V. Borisov, Kalibrovochnye polya, Izd-vo MGU, M., 1986 | MR

[4] D. Ebert, V. Ch. Zhukovskii, A. S. Vshivtsev, Thermodynamic potential with condensate fields in an SU(2) model of QCD, DESY 96-102, June 1996

[5] A. O. Starinets, A. S. Vshivtsev, V. Ch. Zhukovskii, Phys. Lett. B, 322 (1994), 403 | DOI

[6] G. Avramidy, J. Math. Phys., 36:4 (1995), 1557 | DOI | MR

[7] E. Elizalde, S. D. Odintsov, A. Romeo, Phys. Rev. D, 54:6 (1996), 4152 | DOI | MR

[8] A. A. Slavnov, L. D. Faddeev, Vvedenie v teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[9] I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, Effective Action in Quantum Gravity, IOP, Bristol, 1992 | MR

[10] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR