Integrable two-dimensional ultra-Toda mappings and chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 1, pp. 107-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a new class of integrable two-dimensional mappings and chains. We explain how to construct hierarchies of $(1+2)$ integrable systems that are invariant under such discrete transformations. We obtain explicit expressions for soliton-type solutions in terms of the matrix elements of fundamental representations of semisimple algebras.
@article{TMF_1998_117_1_a3,
     author = {A. N. Leznov},
     title = {Integrable two-dimensional {ultra-Toda} mappings and chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {107--122},
     year = {1998},
     volume = {117},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a3/}
}
TY  - JOUR
AU  - A. N. Leznov
TI  - Integrable two-dimensional ultra-Toda mappings and chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 107
EP  - 122
VL  - 117
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a3/
LA  - ru
ID  - TMF_1998_117_1_a3
ER  - 
%0 Journal Article
%A A. N. Leznov
%T Integrable two-dimensional ultra-Toda mappings and chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 107-122
%V 117
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a3/
%G ru
%F TMF_1998_117_1_a3
A. N. Leznov. Integrable two-dimensional ultra-Toda mappings and chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 117 (1998) no. 1, pp. 107-122. http://geodesic.mathdoc.fr/item/TMF_1998_117_1_a3/

[1] D. B. Fairlie, A. N. Leznov, Phys. Lett. A, 199 (1995), 360–364 | DOI | MR | Zbl

[2] A. N. Leznov, Physica D, 87 (1995), 48–51 ; Discrete group of integrable mappings as a foundation of the theory of integrable systems, Preprint MPI 96–46, Bonn, 1996 | DOI | MR | Zbl | MR

[3] V. B. Derjagin, A. N. Leznov, E. A. Yuzbashyan, Two-dimensional integrable mappings and explicit form of equations of $(1+2)$ dimensional hierarchies of integrable systems, Preprint MPI 96-39, Bonn, 1996 | MR | Zbl

[4] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 ; Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986 ; P. G. Olver, Application of Lie groups to differential equations, Springer, Berlin, 1986 | MR | Zbl | MR | MR

[5] A. N. Leznov, TMF, 42 (1980), 343–349 | MR | Zbl

[6] A. N. Leznov, Proc. of II International Workshop “Nonlinear and turbulent process” (Kiev, 1983), ed. R. Sagdeev, Gordon and Breach, New York, 1984, 1437–1453 | MR

[7] A. N. Leznov, V. G. Smirnov, Lett. Math. Phys., 5 (1981), 31–36 | DOI | MR | Zbl

[8] A. N. Leznov, Proc. of International Seminar “Group Methods in Physics” (Zwenigorod, 24–26 November 1982), ed. M. A. Markov, Gordon and Breach, New York, 1983, 443–457

[9] A. N. Leznov, M. V. Saveliev, Progr. in Phys., 15 (1992), 290 | MR | Zbl

[10] A. Davey, K. Stewartson, Proc. Roy. Soc., A338 (1974), 101–110 | DOI | MR | Zbl

[11] A. N. Leznov, E. A. Yuzbashjan, Multi-soliton solution of two-dimensional matrix Davey–Stewartson equation, Preprint MPI-96-37, Bonn, 1996 ; Lett. Math. Phys., 35 (1995), 345–349 | MR | DOI | MR | Zbl

[12] A. N. Leznov, I. A. Fedoseev, TMF, 53:3 (1982), 358–373 ; I. A. Fedoseev, A. N. Leznov, Phys. Lett. B, 141:1–2 (1984), 100–103 ; А. Н. Лезнов, М. А. Мухтаров, ТМФ, 71:1 (1987), 46–53 | MR | DOI | MR | MR