Estimating the convergence radius of Mayer expansions: The nonnegative potential case
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 417-430
Cet article a éte moissonné depuis la source Math-Net.Ru
The convergence radius of the expansion of the thermodynamic pressure limit in powers of the activity is estimated for the case of a nonnegative regular pairwise potential. A sequence of upper bounds that converges to the radius is found.
@article{TMF_1998_116_3_a7,
author = {G. I. Kalmykov},
title = {Estimating the convergence radius of {Mayer} expansions: {The} nonnegative potential case},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {417--430},
year = {1998},
volume = {116},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a7/}
}
G. I. Kalmykov. Estimating the convergence radius of Mayer expansions: The nonnegative potential case. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a7/