A new algebra in the stochastic approximation for the model of a particle interacting with a quantum field
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 401-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When the stochastic approximation is used to calculate correlation functions in the model of a particle interacting with a quantum field, a new algebra with temperature-dependent commutation relations appears. This algebra generalizes the free (Boltzmann) algebra.
@article{TMF_1998_116_3_a6,
     author = {L. Accardi and I. V. Volovich and S. V. Kozyrev},
     title = {A~new algebra in the stochastic approximation for the model of a~particle interacting with a~quantum field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--416},
     year = {1998},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a6/}
}
TY  - JOUR
AU  - L. Accardi
AU  - I. V. Volovich
AU  - S. V. Kozyrev
TI  - A new algebra in the stochastic approximation for the model of a particle interacting with a quantum field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 401
EP  - 416
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a6/
LA  - ru
ID  - TMF_1998_116_3_a6
ER  - 
%0 Journal Article
%A L. Accardi
%A I. V. Volovich
%A S. V. Kozyrev
%T A new algebra in the stochastic approximation for the model of a particle interacting with a quantum field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 401-416
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a6/
%G ru
%F TMF_1998_116_3_a6
L. Accardi; I. V. Volovich; S. V. Kozyrev. A new algebra in the stochastic approximation for the model of a particle interacting with a quantum field. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 401-416. http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a6/

[1] N. N. Bogolyubov, UMZh, 2:2 (1950), 3–24 | MR | Zbl

[2] H. Fröhlich, Adv. in Phys., 3 (1954), 325 | DOI | Zbl

[3] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963

[4] R. Feinman, Statisticheskaya mekhanika, Mir, M., 1975

[5] L. Accardi, A. Frigerio, Y. G. Lu, Commun. Math. Phys., 131 (1990), 537–570 | DOI | MR | Zbl

[6] L. Accardi, S. Kozyrev, I. V. Volovich, Phys. Rev. A, 56 (1997), 375 | DOI

[7] L. Accardi, Y. G. Lu, Commun. Math. Phys., 180:3 (1996), 605–632 | DOI | MR | Zbl

[8] M. Skeide, Hilbert modules in quantum electrodynamics and quantum probability, Preprint Universitat Heidelberg, 1996 | MR

[9] J. Gough, J. of Phys. A, 149 (1997), 2375

[10] J. Cuntz, Commun. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[11] D. E. Evans, Publ. Res. Inst. Math. Sci., 16 (1980), 915–927 | DOI | MR | Zbl

[12] H. Araki, D. E. Evans, J. Operat. Theory, 23 (1981), 326

[13] D. Voiculescu, K. J. Dykema, A. Nica, Free random variables, CRM Monograph Series, 1, Amer. Math. Soc., 1992 | DOI | MR

[14] B. Kummerer, R. Speicher, J. Funct. Anal., 103 (1992), 372–478 | DOI | MR

[15] O. Bratteli, P. E. T. Jorgensen, A. Kishimoto, R. F. Werner, Pure states on $O_d$, E-print func-an/9711004 | MR

[16] I. Ya. Aref'eva, I. V. Volovich, Nucl. Phys. B, 462 (1996), 600 | DOI | MR | Zbl