Critical dimensions of composite operators in the nonlinear $\sigma$-model
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 379-400

Voir la notice de l'article provenant de la source Math-Net.Ru

A general scheme for calculating critical exponents of an arbitrary system of composite operators mixed by a renormalization procedure is presented using $1/N$ expansion. Restrictions imposed on the mixing matrix by the conformal invariance are investigated. The anomalous dimensions of all powerlike products of an auxiliary field are calculated up to the second order in $1/N$.
@article{TMF_1998_116_3_a5,
     author = {S. \`E. Derkachev and A. N. Manashov},
     title = {Critical dimensions of composite operators in the nonlinear $\sigma$-model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {379--400},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/}
}
TY  - JOUR
AU  - S. È. Derkachev
AU  - A. N. Manashov
TI  - Critical dimensions of composite operators in the nonlinear $\sigma$-model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 379
EP  - 400
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/
LA  - ru
ID  - TMF_1998_116_3_a5
ER  - 
%0 Journal Article
%A S. È. Derkachev
%A A. N. Manashov
%T Critical dimensions of composite operators in the nonlinear $\sigma$-model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 379-400
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/
%G ru
%F TMF_1998_116_3_a5
S. È. Derkachev; A. N. Manashov. Critical dimensions of composite operators in the nonlinear $\sigma$-model. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 379-400. http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/