Critical dimensions of composite operators in the nonlinear $\sigma$-model
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 379-400
Voir la notice de l'article provenant de la source Math-Net.Ru
A general scheme for calculating critical exponents of an arbitrary system of composite operators mixed by a renormalization procedure is presented using $1/N$ expansion. Restrictions imposed on the mixing matrix by the conformal invariance are investigated. The anomalous dimensions of all powerlike products of an auxiliary field are calculated up to the second order in $1/N$.
@article{TMF_1998_116_3_a5,
author = {S. \`E. Derkachev and A. N. Manashov},
title = {Critical dimensions of composite operators in the nonlinear $\sigma$-model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {379--400},
publisher = {mathdoc},
volume = {116},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/}
}
TY - JOUR AU - S. È. Derkachev AU - A. N. Manashov TI - Critical dimensions of composite operators in the nonlinear $\sigma$-model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 379 EP - 400 VL - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/ LA - ru ID - TMF_1998_116_3_a5 ER -
S. È. Derkachev; A. N. Manashov. Critical dimensions of composite operators in the nonlinear $\sigma$-model. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 379-400. http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a5/