Perturbation theory for the periodic Anderson model: II. Superconducting state
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 456-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new diagram technique, which has been developed for strongly correlated electron systems, is used to study the periodic Anderson model in the superconducting state. To treat both normal and anomalous Green's functions on an equal footing, we introduce an additional charge quantum number that distinguishes creation and annihilation operators. We derive the Dyson equations for the Green's functions of band and localized electrons in the presence of superconductivity. The equations obtained admit both singlet-type and triplet-type superconductivity. For singlet-type superconductivity, we establish the correspondence between these equations and the spinor Gor'kov–Nambu formalism.
@article{TMF_1998_116_3_a10,
     author = {V. A. Moskalenko},
     title = {Perturbation theory for the periodic {Anderson} model: {II.~Superconducting} state},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {456--473},
     year = {1998},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a10/}
}
TY  - JOUR
AU  - V. A. Moskalenko
TI  - Perturbation theory for the periodic Anderson model: II. Superconducting state
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 456
EP  - 473
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a10/
LA  - ru
ID  - TMF_1998_116_3_a10
ER  - 
%0 Journal Article
%A V. A. Moskalenko
%T Perturbation theory for the periodic Anderson model: II. Superconducting state
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 456-473
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a10/
%G ru
%F TMF_1998_116_3_a10
V. A. Moskalenko. Perturbation theory for the periodic Anderson model: II. Superconducting state. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 456-473. http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a10/

[1] J. Hubbard, Proc. R. Soc. A, 276 (1963), 233 | DOI

[2] P. W. Anderson, Phys. Rev., 124 (1961), 41 | DOI | MR

[3] M. I. Vladimir, V. A. Moskalenko, TMF, 82 (1990), 428

[4] S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, TMF, 85 (1990), 248

[5] S. P. Kozhokaru, V. A. Moskalenko, TMF, 97 (1993), 270

[6] V. A. Moskalenko, S. P. Cojocaru, M. I. Vladimir, A diagram technique for strongly interacting systems. One- and two-band Hubbard Models, Preprint ICTP, IC/94/182, Trieste, Italy, 1994 | Zbl

[7] N. N. Bogolyubov, V. A. Moskalenko, DAN SSSR, 316:5 (1991), 1107

[8] N. N. Bogolyubov, V. A. Moskalenko, TMF, 86 (1991), 16 | MR | Zbl

[9] N. N. Bogolyubov, V. A. Moskalenko, TMF, 92 (1992), 182 | MR

[10] V. A. Moskalenko, D. F. Digor, L. A. Dogotaru, I. G. Porcescu, J. Low Temper. Phys., 105:3/4 (1996), 633 ; J. Phys. Studies, 1:3 (1997), 453 | DOI | MR | Zbl

[11] V. A. Moskalenko, TMF, 110 (1997), 308 | DOI | Zbl

[12] V. A. Moskalenko, D. F. Digor, M. I. Vladimir, L. A. Dogotaru, I. G. Porcescu, Physica C, 282–287 (1997), 1717 | DOI

[13] N. N. Bogolyubov, Izbrannye trudy, V. III, Naukova Dumka, Kiev, 1971 | MR

[14] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Nauka, M., 1962 | MR

[15] P. M. Slobodyan, I. V. Stasyuk, TMF, 19 (1974), 423

[16] R. O. Zaitsev, ZhETF, 68 (1975), 207; 70 (1976), 1100

[17] Yu. A. Izyumov, Yu. M. Skryabin, Statisticheskaya mekhanika magnitnouporyadochennykh sistem, Nauka, M., 1987 | MR