Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 323-335
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the transfer and monodromy matrices for the degenerate Heun equation. We use an auxiliary ordinary third-order linear differential equation that is “stable” under the integral Euler transformation. We find the invariant of this transformation and express it via the transfer matrix element.
@article{TMF_1998_116_3_a0,
author = {A. Ya. Kazakov},
title = {Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--335},
publisher = {mathdoc},
volume = {116},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a0/}
}
TY - JOUR AU - A. Ya. Kazakov TI - Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 323 EP - 335 VL - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a0/ LA - ru ID - TMF_1998_116_3_a0 ER -
%0 Journal Article %A A. Ya. Kazakov %T Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations %J Teoretičeskaâ i matematičeskaâ fizika %D 1998 %P 323-335 %V 116 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a0/ %G ru %F TMF_1998_116_3_a0
A. Ya. Kazakov. Integral symmetries, integral invariants, and monodromy matrices for ordinary differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/TMF_1998_116_3_a0/