A differential calculus on the quantum group $SU_q(2)$ compatible with the gauge-transformation structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 265-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a three-dimensional bicovariant differential calculus on the quantum group $SU_q(2)$ that is compatible with the structure of gauge transformations. In the approach based on the global covariance with respect to the stability subgroup $U(1)$, we show that the gauge-covariant exterior differential algebra on $SU_q(2)$ is uniquely determined. We construct explicit representations of $q$-deformed Lie algebras in terms of differential operators.
@article{TMF_1998_116_2_a7,
     author = {D. G. Pak},
     title = {A~differential calculus on the quantum group $SU_q(2)$ compatible with the gauge-transformation structure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--276},
     year = {1998},
     volume = {116},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a7/}
}
TY  - JOUR
AU  - D. G. Pak
TI  - A differential calculus on the quantum group $SU_q(2)$ compatible with the gauge-transformation structure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 265
EP  - 276
VL  - 116
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a7/
LA  - ru
ID  - TMF_1998_116_2_a7
ER  - 
%0 Journal Article
%A D. G. Pak
%T A differential calculus on the quantum group $SU_q(2)$ compatible with the gauge-transformation structure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 265-276
%V 116
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a7/
%G ru
%F TMF_1998_116_2_a7
D. G. Pak. A differential calculus on the quantum group $SU_q(2)$ compatible with the gauge-transformation structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 265-276. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a7/

[1] V. G. Drinfeld, “Quantum Groups”, Proc. Int. Cong. Math., V. 1, Berkeley, CA, USA, 1986, 793 | MR

[2] M. Jimbo, Lett. Math. Phys., 11 (1986), 247 | DOI | MR | Zbl

[3] S. L. Woronowicz, Publ. Res. Inst. Math. Sci. Kyoto University, 23 (1989), 117 | DOI | MR

[4] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Algebra i analiz, 1:1 (1987), 178 | MR

[5] S. L. Woronowicz, Commun. Math. Phys., 122 (1989), 125 | DOI | MR | Zbl

[6] A. P. Isaev, P. N. Pyatov, Phys. Lett. A, 179 (1993), 81 | DOI | MR

[7] A. P. Isaev, Z. Popowicz, Phys. Lett. B, 307 (1993), 353 | DOI | MR

[8] V. P. Akulov, V. D. Gershun, A. I. Gumenchuk, Pisma v ZhETF, 58 (1993), 462 | MR

[9] L. D. Faddeev, P. N. Pyatov, The Differential Calculus on Quantum Linear Groups, E-print hep-th/9402070 | MR

[10] I. Ya. Aref'eva, G. E. Arutyunov, P. B. Medvedev, J. Math. Phys., 35 (1994), 6658 | DOI | MR | Zbl

[11] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Quantum Gravit., 1 (1984), 469 | DOI | MR

[12] J. Wess, B. Zumino, Nucl. Phys. (Proc. Suppl.) B, 18 (1990), 302 | DOI | MR

[13] A. Schirrmacher, J. Wess, B. Zumino, Z. Phys. C, 49 (1991), 317 | DOI | MR

[14] O. Ogievetsky, Differential Operators on Quantum Spaces for $GL_q(n)$ and $SO_q(n)$, Preprint MPI-Ph/91-103 | MR | Zbl

[15] A. P. Isaev, Z. Popowicz, Phys. Lett. B, 281 (1992), 271 | DOI | MR

[16] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981 | MR

[17] T. Sudbery, Phys. Lett. B, 375 (1996), 75 | DOI | MR | Zbl