The “free” quantum Brownian particle as a non-Fock linear bosonic system
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 201-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We quantize the Langevin equation for a “free” Brownian particle. The corresponding linear bosonic system possesses infrared singularities and is therefore non-Fock. We construct the physical representations of fields using the generalized stationary states.
@article{TMF_1998_116_2_a3,
     author = {A. I. Oksak and A. D. Sukhanov},
     title = {The {\textquotedblleft}free{\textquotedblright} quantum {Brownian} particle as {a~non-Fock} linear bosonic system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--214},
     year = {1998},
     volume = {116},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a3/}
}
TY  - JOUR
AU  - A. I. Oksak
AU  - A. D. Sukhanov
TI  - The “free” quantum Brownian particle as a non-Fock linear bosonic system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 201
EP  - 214
VL  - 116
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a3/
LA  - ru
ID  - TMF_1998_116_2_a3
ER  - 
%0 Journal Article
%A A. I. Oksak
%A A. D. Sukhanov
%T The “free” quantum Brownian particle as a non-Fock linear bosonic system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 201-214
%V 116
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a3/
%G ru
%F TMF_1998_116_2_a3
A. I. Oksak; A. D. Sukhanov. The “free” quantum Brownian particle as a non-Fock linear bosonic system. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 201-214. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a3/

[1] J. Schwinger, J. Math. Phys., 2:3 (1961), 407–432 | DOI | MR | Zbl

[2] G. W. Ford, M. Kac, P. Mazur, J. Math. Phys., 6:4 (1965), 504–515 | DOI | MR | Zbl

[3] H. Dekker, Phys. Rep., 80:1 (1981), 1–112 | DOI | MR

[4] J. T. Lewis, H. Maassen, “Hamiltonian models of classical and quantum stochastic processes”, Quantum Probability and Applications to the Quantum Theory of Irreversible Processes, Lecture Notes in Mathematics, 1055, eds. L. Accardi, A. Frigerio, V. Corini, Springer-Verlag, Berlin–Heidelberg–New York, 1984, 245–276 | DOI | MR

[5] G. W. Ford, J. T. Lewis, R. F. O'Connel, Phys. Rev. Lett., 55:21 (1985), 2273–2276 | DOI | MR

[6] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[7] A. I. Oksak, TMF, 48:3 (1981), 297–318 | MR

[8] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[9] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR