Nonstationary boundary problem for model kinetic equations at critical parameters
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 305-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonstationary solutions of the model kinetic equation at critical values of the motion of the wall (the boundary of the half-space occupied by gas) are studied. The characteristic equation is obtained by separating the variables. The eigenfunctions and the eigenvalue spectrum are found in the distribution space. A solution to the equation is expandable over the eigenfunction basis. The Rayleigh problem is considered as an application. The distribution function is continuous in the plane of the wall-motion parameters, including the closed curve of critical parameter values.
@article{TMF_1998_116_2_a10,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Nonstationary boundary problem for model kinetic equations at critical parameters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--320},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Nonstationary boundary problem for model kinetic equations at critical parameters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 305
EP  - 320
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/
LA  - ru
ID  - TMF_1998_116_2_a10
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Nonstationary boundary problem for model kinetic equations at critical parameters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 305-320
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/
%G ru
%F TMF_1998_116_2_a10
A. V. Latyshev; A. A. Yushkanov. Nonstationary boundary problem for model kinetic equations at critical parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 305-320. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/