Nonstationary boundary problem for model kinetic equations at critical parameters
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 305-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonstationary solutions of the model kinetic equation at critical values of the motion of the wall (the boundary of the half-space occupied by gas) are studied. The characteristic equation is obtained by separating the variables. The eigenfunctions and the eigenvalue spectrum are found in the distribution space. A solution to the equation is expandable over the eigenfunction basis. The Rayleigh problem is considered as an application. The distribution function is continuous in the plane of the wall-motion parameters, including the closed curve of critical parameter values.
@article{TMF_1998_116_2_a10,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Nonstationary boundary problem for model kinetic equations at critical parameters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--320},
     year = {1998},
     volume = {116},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Nonstationary boundary problem for model kinetic equations at critical parameters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 305
EP  - 320
VL  - 116
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/
LA  - ru
ID  - TMF_1998_116_2_a10
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Nonstationary boundary problem for model kinetic equations at critical parameters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 305-320
%V 116
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/
%G ru
%F TMF_1998_116_2_a10
A. V. Latyshev; A. A. Yushkanov. Nonstationary boundary problem for model kinetic equations at critical parameters. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 305-320. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a10/

[1] C. Cercignani, F. Sernagiotto, Ann. Phys., 30:1 (1964), 154 | DOI | MR

[2] C. Cercignani, Ann. Phys., 40:4 (1966), 454 | DOI | MR

[3] K. Cherchinyani, Matematicheskie metody v kineticheskoi teorii gazov, Mir, M., 1973 | MR

[4] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1977

[5] A. V. Latyshev, A. A. Yushkanov, TMF, 92:1 (1992), 127 | MR

[6] K. Aoki, C. Cercignani, Z. angew. Math. und Phys., 35:2 (1984), 127 | DOI | MR | Zbl

[7] K. Aoki, C. Cercignani, Z. angew. Math. und Phys., 35:3 (1984), 345 | DOI | MR | Zbl

[8] A. Frezzotti, “The propagation of sound waves in an ultrarelativistic gas according to the method of elementary solutions”, Atti 8 congr. Assoc. ital. mecc. teor. ed appl. (AIMETA), Torino, 1986, 725 | MR

[9] C. E. Siewert, E. E. Burniston, J. R. Thomas, Phys. Fluids, 16:9 (1973), 1532 | DOI | Zbl

[10] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR

[11] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[12] K. Keiz, P. Tsvaifel, Lineinaya teoriya perenosa, Mir, M., 1972

[13] T. A. Germogenova, O polnote sistemy sobstvennykh funktsii kharakteristicheskogo uravneniya teorii perenosa, Preprint No 103, IPM AN SSSR, M., 1976