Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 182-192
Voir la notice de l'article provenant de la source Math-Net.Ru
Double-periodic solutions of the Euler–Lagrange equation for the $(1+1)$-dimensional scalar $\varphi^4$-theory are considered. The nonlinear term is assumed to be small, and the Poincarй method is used to seek asymptotic solutions in the standing-wave form. The principal resonance problem, which arises for zero mass, is resolved if the leading-order term is taken in the form of a Jacobi elliptic function.
@article{TMF_1998_116_2_a1,
author = {S. Yu. Vernov and O. A. Khrustalev},
title = {Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {182--192},
publisher = {mathdoc},
volume = {116},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/}
}
TY - JOUR AU - S. Yu. Vernov AU - O. A. Khrustalev TI - Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 182 EP - 192 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/ LA - ru ID - TMF_1998_116_2_a1 ER -
%0 Journal Article %A S. Yu. Vernov %A O. A. Khrustalev %T Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory %J Teoretičeskaâ i matematičeskaâ fizika %D 1998 %P 182-192 %V 116 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/ %G ru %F TMF_1998_116_2_a1
S. Yu. Vernov; O. A. Khrustalev. Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 182-192. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/