Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 182-192

Voir la notice de l'article provenant de la source Math-Net.Ru

Double-periodic solutions of the Euler–Lagrange equation for the $(1+1)$-dimensional scalar $\varphi^4$-theory are considered. The nonlinear term is assumed to be small, and the Poincarй method is used to seek asymptotic solutions in the standing-wave form. The principal resonance problem, which arises for zero mass, is resolved if the leading-order term is taken in the form of a Jacobi elliptic function.
@article{TMF_1998_116_2_a1,
     author = {S. Yu. Vernov and O. A. Khrustalev},
     title = {Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--192},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/}
}
TY  - JOUR
AU  - S. Yu. Vernov
AU  - O. A. Khrustalev
TI  - Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 182
EP  - 192
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/
LA  - ru
ID  - TMF_1998_116_2_a1
ER  - 
%0 Journal Article
%A S. Yu. Vernov
%A O. A. Khrustalev
%T Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 182-192
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/
%G ru
%F TMF_1998_116_2_a1
S. Yu. Vernov; O. A. Khrustalev. Approximate double-periodic solutions in $(1+1)$-dimensional $\varphi ^4$-theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 182-192. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a1/