Operator interpretation of the resonances generated by ${2}\times {2}$ matrix Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 163-181

Voir la notice de l'article provenant de la source Math-Net.Ru

An analytic continuation of the transfer function for a $2\times 2$ matrix Hamiltonian to unphysical sheets of the Riemann energy surface is considered. Nonselfadjoint operators are constructed such that their spectra reproduce certain parts of the transfer-function spectrum including resonances on the unphysical sheets nearest to the physical one. The basis property and completeness of the systems of transfer-function root vectors, which include resonance vectors, are established.
@article{TMF_1998_116_2_a0,
     author = {R. Mennicken and A. K. Motovilov},
     title = {Operator interpretation of the resonances generated by ${2}\times {2}$ matrix {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--181},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a0/}
}
TY  - JOUR
AU  - R. Mennicken
AU  - A. K. Motovilov
TI  - Operator interpretation of the resonances generated by ${2}\times {2}$ matrix Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 163
EP  - 181
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a0/
LA  - ru
ID  - TMF_1998_116_2_a0
ER  - 
%0 Journal Article
%A R. Mennicken
%A A. K. Motovilov
%T Operator interpretation of the resonances generated by ${2}\times {2}$ matrix Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 163-181
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a0/
%G ru
%F TMF_1998_116_2_a0
R. Mennicken; A. K. Motovilov. Operator interpretation of the resonances generated by ${2}\times {2}$ matrix Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/TMF_1998_116_2_a0/