Resonance multiplicity of a perturbed periodic Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 1, pp. 134-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the perturbation of a periodic Schrödinger operator by a potential that is periodic in the variables $x_1$ and $x_2$ and exponentially decreases as $|x_3| \to \infty$. Near the zero surface of the derivative of the eigenvalue of the periodic operator in a cell with respect to the third quasi-momentum component, we obtain relations between the resonance multiplicity and the order of the pole of the quantities characterizing the scattering. As a rule, the forward scattering amplitude vanishes on this surface.
@article{TMF_1998_116_1_a5,
     author = {Yu. P. Chuburin},
     title = {Resonance multiplicity of a~perturbed periodic {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {134--145},
     year = {1998},
     volume = {116},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a5/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Resonance multiplicity of a perturbed periodic Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 134
EP  - 145
VL  - 116
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a5/
LA  - ru
ID  - TMF_1998_116_1_a5
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Resonance multiplicity of a perturbed periodic Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 134-145
%V 116
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a5/
%G ru
%F TMF_1998_116_1_a5
Yu. P. Chuburin. Resonance multiplicity of a perturbed periodic Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 1, pp. 134-145. http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a5/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[2] E. B. Davies, Proc. Cambridge Philos. Soc., 82 (1977), 327 | DOI | MR | Zbl

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[4] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[5] Yu. P. Chuburin, TMF, 110:3 (1997), 443 | DOI | MR | Zbl

[6] Yu. P. Chuburin, O rasseyanii na kristallicheskoi plenke (spektr i asimptotika volnovykh funktsii uravneniya Shredingera), Preprint, Fiziko-tekhnicheskii institut UNTs AN SSSR, Sverdlovsk, 1985

[7] Yu. P. Chuburin, TMF, 72:1 (1987), 120 | MR

[8] T. M. Gataullin, M. V. Karasev, TMF, 9:2 (1971), 252 | Zbl

[9] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[10] Yu. P. Chuburin, Matem. zametki, 52:2 (1992), 138 | MR

[11] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965 | MR

[12] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975