Dynamic systems related to the Cremmer–Gervais $R$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 1, pp. 101-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalized Cremmer–Gervais $R$-matrix, which is a twist of the standard $sl_q(3)$ $R$-matrix, depends on two additional parameters. We discuss the properties of this $R$-matrix and construct two associated dynamic systems: the $q$-oscillator that is covariant with respect to the corresponding quantum group and an integrable spin chain with a non-Hermitian Hamiltonian.
@article{TMF_1998_116_1_a2,
     author = {E. V. Damaskinsky and P. P. Kulish and M. Chaichian},
     title = {Dynamic systems related to the {Cremmer{\textendash}Gervais} $R$-matrix},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--112},
     year = {1998},
     volume = {116},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a2/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
AU  - P. P. Kulish
AU  - M. Chaichian
TI  - Dynamic systems related to the Cremmer–Gervais $R$-matrix
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 101
EP  - 112
VL  - 116
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a2/
LA  - ru
ID  - TMF_1998_116_1_a2
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%A P. P. Kulish
%A M. Chaichian
%T Dynamic systems related to the Cremmer–Gervais $R$-matrix
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 101-112
%V 116
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a2/
%G ru
%F TMF_1998_116_1_a2
E. V. Damaskinsky; P. P. Kulish; M. Chaichian. Dynamic systems related to the Cremmer–Gervais $R$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 116 (1998) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/TMF_1998_116_1_a2/

[1] L. D. Faddeev, “Integrable models in $(1+1)$-dimensional quantum field theory”, Recent Advances in Field Theory and Statistical Mechanics, 1982 Les Houches Lectures, Session XXXIX, eds. J.-B. Zuber and R. Stora, Elsevier, Amsterdam, 1984, 563 ; Int. J. Mod. Phys. A, 10 (1995), 1845 ; “How Algebraic Bethe Ansatz works for integrable model”, 1996 Les Houches Lectures, Elsevier, Amsterdam, 1996; E-print hep-th/9605187 | MR | DOI | MR | Zbl

[2] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method: recent developments”, Integrable quantum field theories, Lect. Notes Phys., 151, 1982, 61 | DOI | MR | Zbl

[3] N. M. Bogoliubov, A. G. Izergin, V. E. Korepin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[4] Yang–Baxter Equation in Integrable Models, ed. M. Jimbo, World Scientific, Singapore, 1989 | MR

[5] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (ICM-1986), V. 1 (Berkley, N. Y.), Amer. Math. Society, Providence, 1987, 798 | MR | Zbl

[6] V. G. Drinfeld, Algebra i analiz, 1:2 (1989), 30 | MR

[7] N. Yu. Reshetikhin, Lett. Math. Phys., 20 (1990), 331 | DOI | MR | Zbl

[8] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178 | MR

[9] E. Cremmer, J.-L. Gervais, Commun. Math. Phys., 134 (1990), 619 | DOI | MR | Zbl

[10] T. J. Hodges, “Nonstandard quantum groups associated to certain Belavin–Drinfeld triples”, Contemp. Math. (to appear) ; ; Intern. Math. Res. Notices, 10 (1995), 465 ; E-print q-alg/9609029E-print q-alg/9506018 | MR | DOI | Zbl | MR

[11] A. D. Jacobs, J. F. Cornwell, Twisting $2$-cocycles for the construction of new non-standard quantum groups, E-print q-alg/9702028 | MR

[12] J. Wess, B. Zumino, Nucl. Phys. B (Proc. Suppl.), 18 (1990), 302 | DOI | MR

[13] M. Irac-Astaud, Rev. Math. Phys., 8 (1996), 1083 ; E-print q-alg/9609008 | DOI | MR | Zbl

[14] P. P. Kulish, TMF, 94 (1993), 193 ; P. P. Kulish, “Quantum group covariant algebras”, Quantum Groups and their Applications in Physics, Proc. Inter. School of Physics “Enrico Fermi”, Course 127 (Varenna), eds. L. Castellani and J. Wess, IOS Press, Amsterdam, 1995, 203 | MR | Zbl | MR

[15] M. Chaichian, P. P. Kulish, “Quantum group covariant systems”, From Field Theory to Quantum Groups, eds. B. Jancewics, J. Sobczyk, World Scientific, Singapore, 1996, 99 ; E-print q-alg/9512017 | DOI | MR | Zbl

[16] J. Balog, L. Da̧browski, L. Fehér, Phys. Lett. B, 257:1/2, 74 | DOI | MR

[17] P. P. Kulish, E. V. Damaskinsky, J. Phys. A, 23:9 (1990), L415 | DOI | MR | Zbl

[18] E. V. Damaskinsky, P. P. Kulish, Int. J Mod. Phys. A, 12:1 (1997), 153 ; E-print q-alg/9610002 | DOI | MR | Zbl

[19] F. C. Alcaraz, M. Droz, M. Henkel, V. Rittenberg, Ann. Phys., 230 (1994), 250 | DOI | MR | Zbl

[20] P. P. Kulish, A. A. Stolin, Czech. J. Phys., 47 (1997), 123 ; E-print q-alg/9708024 | DOI | MR | Zbl

[21] J.-M. Maillet, J. Sanchez de Santos, Drinfeld twists and algebraic Bethe Ansatz, E-print q-alg/9612012 | MR

[22] G. Fiore, Drinfeld twist and $q$-deforming maps for Lie group covariant Heisenberg algebras, E-print q-alg/9708017 | MR

[23] P. P. Kulish, A. I. Mudrov, Universal Cremmer–Gervais $R$-matrix, Preprint POMI 98-2

[24] A. T. Filippov, A. P. Isaev, J. Phys. A, 24 (1991), L63 | DOI | Zbl

[25] Ya. Soibelman, Int. J Mod. Phys. B. Supp. 1b, 7 (1992), 859 | DOI | MR | Zbl

[26] J. A. de Azcarraga, P. P. Kulish, F. Rodenas, Phys. Lett. B, 351 (1995), 123 | DOI | MR

[27] V. R. Jones, Int. J Mod. Phys. B, 4 (1990), 701 | DOI | MR | Zbl

[28] P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A, 16 (1983), L591 | DOI | MR | Zbl