Vapor–liquid phase transition: The Van der Waals model
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 437-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the kinetic theory of critical phenomena in the Van der Waals model. Our approach is considerably different from the traditional phenomenological approach based on the scaling invariance hypothesis and the renormalization group method. From the analysis of the kinetic equation, we can calculate the dynamic and fluctuation characteristics and thus explain a number of experimental observations. The dynamic processes are investigated using self-consistent equations for the first and second moments of the distribution function. We use the corresponding Langevin equation to describe the fluctuation processes. The structure of the dissipative terms in the kinetic equation determines the source intensities. Analysis of experimental data for the temperature dependence of the heat capacity and for the molecular scattering spectra confirms the conclusions derived from the kinetic theory.
@article{TMF_1998_115_3_a8,
     author = {Yu. L. Klimontovich},
     title = {Vapor{\textendash}liquid phase transition: {The} {Van} der {Waals} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {437--458},
     year = {1998},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a8/}
}
TY  - JOUR
AU  - Yu. L. Klimontovich
TI  - Vapor–liquid phase transition: The Van der Waals model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 437
EP  - 458
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a8/
LA  - ru
ID  - TMF_1998_115_3_a8
ER  - 
%0 Journal Article
%A Yu. L. Klimontovich
%T Vapor–liquid phase transition: The Van der Waals model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 437-458
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a8/
%G ru
%F TMF_1998_115_3_a8
Yu. L. Klimontovich. Vapor–liquid phase transition: The Van der Waals model. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 437-458. http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a8/

[1] L. L. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1976 | MR

[2] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[3] G. Stenli, Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973

[4] M. A. Anisimov, Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh, Nauka, M., 1987

[5] M. A. Anisimov, V. A. Rabinovich, V. V. Sychev, Termodinamika kriticheskogo sostoyaniya individualnykh veschestv, Energoizdat, M., 1990

[6] V. P. Skripov, Metastabilnaya zhidkost, Nauka, M., 1972

[7] M. Fisher, Priroda kriticheskogo sostoyaniya, Mir, M., 1968

[8] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. 1, Mir, M., 1978 | MR

[9] Yu. L. Klimontovich, Statisticheskaya fizika, Nauka, M., 1982 | MR

[10] Yu. L. Klimontovich, Statisticheskaya teoriya otkrytykh sistem, Yanus, M., 1995

[11] J. Lebowitz, O. Penrose, J. Math. Phys., 7 (1966), 98 | DOI | MR | Zbl

[12] Yu. L. Klimontovich, Phys. Lett. A, 210 (1996), 65 | DOI | MR | Zbl

[13] A. N. Malakhov, N. V. Agudov, Chaos, 4 (1994), 665 | DOI

[14] E. M. Lifshits, L. P. Pitaevskii, Fizicheskaya kinetika, Nauka, M., 1979 | Zbl

[15] Yu. L. Klimontovich, UFN, 166:11 (1996), 1231 | DOI