Superconductivity in the Fröhlich two-dimensional model with an arbitrary carrier concentration
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 419-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Fröhlich Hamiltonian, we obtain self-consistent equations for the energy gap and the chemical potential. Using these equations, we can analyze the superconductivity properties of the system for an arbitrary carrier concentration. We consider weak, intermediate, and strong interactions between fermions and observe the transition from the Cooper coupling to the local-pair regime in the indirect-interaction model.
@article{TMF_1998_115_3_a7,
     author = {V. M. Loktev and V. M. Turkovsky and S. G. Sharapov},
     title = {Superconductivity in the {Fr\"ohlich} two-dimensional model with an arbitrary carrier concentration},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--436},
     year = {1998},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a7/}
}
TY  - JOUR
AU  - V. M. Loktev
AU  - V. M. Turkovsky
AU  - S. G. Sharapov
TI  - Superconductivity in the Fröhlich two-dimensional model with an arbitrary carrier concentration
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 419
EP  - 436
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a7/
LA  - ru
ID  - TMF_1998_115_3_a7
ER  - 
%0 Journal Article
%A V. M. Loktev
%A V. M. Turkovsky
%A S. G. Sharapov
%T Superconductivity in the Fröhlich two-dimensional model with an arbitrary carrier concentration
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 419-436
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a7/
%G ru
%F TMF_1998_115_3_a7
V. M. Loktev; V. M. Turkovsky; S. G. Sharapov. Superconductivity in the Fröhlich two-dimensional model with an arbitrary carrier concentration. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 419-436. http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a7/

[1] V. M. Loktev, FNT, 22:1 (1996), 3

[2] M. R. Schafroth, Phys. Rev., 96:4 (1954), 1149 ; 5, 1442; 100:2 (1955), 463 | DOI | DOI | MR

[3] N. N. Bogolyubov, Izv. AN SSSR. Ser. fiz., 11 (1947), 77 | MR

[4] M. Randeria, J. Duan, L. Shieh, Phys. Rev. Lett., 62:9 (1989), 981 ; Phys. Rev. B, 41:1 (1990), 327 | DOI | DOI

[5] E. V. Gorbar, V. P. Gusynin, V. M. Loktev, SFKhT, 6:3 (1992), 483; ФНТ, 19:11 (1993), 1183

[6] M. E. Palistrant, TMF, 109:1 (1996), 137 | DOI | Zbl

[7] R. Micnas, J. Ranninger, S. Robaszkievicz, Rev. Mod. Phys., 62:1 (1990), 113 | DOI

[8] M. Randeria, “Crossover from BCS superconductivity to Bose–Einstein condensation”, Bose–Einstein Condensation, eds. A. Griffin, D. W. Snoke, and S. Stringary, Cambridge Univ. Press, New York, 1995, 355 | DOI

[9] V. M. Loktev, S. G. Sharapov, Superconductivity condensate formation in metallic systems with arbitrary carrier density, , 1997 E-print Cond-mat/9706285

[10] L. N. Bulaevskii, V. L. Ginzburg, G. F. Zharkov, D. A. Kirzhnits, Yu. V. Kopaev, E. G. Maksimov, D. N. Khomskii, Problema vysokotemperaturnoi sverkhprovodimosti, eds. V. L. Ginzburg i D. A. Kirzhnits, Nauka, M., 1977 | MR

[11] V. L. Ginzburg, E. G. Maksimov, SFKhT, 5 (1992), 1543 | MR

[12] N. M. Plakida, Vysokotemperaturnye sverkhprovodniki, Izd-vo “Mezhdunarodnaya programma obrazovaniya”, M., 1996

[13] D. Pines, Tr. J. Phys., 20:6 (1996), 535

[14] Yu. B. Gaididei, V. M. Loktev, Phys. Stat. Sol. b, 147:2 (1988), 307 | DOI

[15] E. A. Pashitskii, FNT, 21:10 (1995), 995; 11, 1091

[16] V. M. Loktev, S. G. Sharapov, FNT, 22:3 (1996), 211

[17] G. M. Eliashberg, ZhETF, 38:3 (1960), 966

[18] T. Appelquist, M. Bowich, D. Karabali, L. C. R. Wijewardhara, Phys. Rev. D, 33:10 (1986), 3704 | DOI | MR

[19] V. P. Gusynin, V. A. Miransky, I. A. Shovkovy, Nucl. Phys. B, 462:1–3 (1996), 249 | DOI

[20] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Nauka, M., 1962 | MR

[21] Dzh. Shriffer, Teoriya sverkhprovodimosti, Nauka, M., 1970

[22] E. H. Simmons, Phys. Rev. D, 42:8 (1990), 2933 ; T. Kugo, M. J. Mitchard, Phys. Lett. B, 282:1 (1992), 162 | DOI | DOI | MR

[23] J. P. Carbotte, Rev. Mod. Phys., 62:4 (1990), 1027 | DOI

[24] A. B. Migdal, ZhETF, 34:6 (1958), 1438 | MR

[25] M. A. Ikeda, A. Ogasawara, M. Sugihara, Phys. Lett. A, 170:4 (1992), 319 | DOI

[26] L. Pietronero, S. Strassler, Europhys. Lett., 18:7 (1992), 627 ; S. Grimadi, L. Pietronero, S. Strassler, Phys. Rev. Lett., 75:7 (1995), 1158 | DOI | MR | DOI

[27] P. Morel, P. W. Anderson, Phys. Rev., 125:4 (1962), 1263 | DOI | MR

[28] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973 | MR

[29] S. V. Vonsovskii, Yu. A. Izyumov, E. Z. Kurmaev, Sverkhprovodimost perekhodnykh metallov, ikh splavov i soedinenii, Nauka, M., 1977

[30] B. T. Geilikman, V. Z. Kresin, FTT, 7:11 (1965), 3294