Diophantine equations related to quasicrystals: A note
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 477-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give the general solution of three Diophantine equations in the ring of integers of the algebraic number field $\mathbf{Q}\bigl[\sqrt{5}\,\bigr]$. These equations are related to the problem of determining the minimum distance in quasicrystals with fivefold symmetry.
@article{TMF_1998_115_3_a10,
     author = {E. Pelantova and A. M. Perelomov},
     title = {Diophantine equations related to quasicrystals: {A~note}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {477--480},
     year = {1998},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a10/}
}
TY  - JOUR
AU  - E. Pelantova
AU  - A. M. Perelomov
TI  - Diophantine equations related to quasicrystals: A note
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 477
EP  - 480
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a10/
LA  - ru
ID  - TMF_1998_115_3_a10
ER  - 
%0 Journal Article
%A E. Pelantova
%A A. M. Perelomov
%T Diophantine equations related to quasicrystals: A note
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 477-480
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a10/
%G ru
%F TMF_1998_115_3_a10
E. Pelantova; A. M. Perelomov. Diophantine equations related to quasicrystals: A note. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a10/

[1] H. Hasse, Number theory, Springer-Verlag, New York, 1980 | MR | Zbl

[2] Z. Masáková, J. Patera, E. Pelantová, On the minimal distance in quasicrystal, Submitted for publication

[3] L. Chen, R. V. Moody, J. Patera, “Non-crystallographic root systems”, Quasicrystals and discrete geometry, Fields Inst. Commun., ed. J. Patera (to appear) | MR