Diophantine equations related to quasicrystals: A note
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 477-480
Cet article a éte moissonné depuis la source Math-Net.Ru
We give the general solution of three Diophantine equations in the ring of integers of the algebraic number field $\mathbf{Q}\bigl[\sqrt{5}\,\bigr]$. These equations are related to the problem of determining the minimum distance in quasicrystals with fivefold symmetry.
@article{TMF_1998_115_3_a10,
author = {E. Pelantova and A. M. Perelomov},
title = {Diophantine equations related to quasicrystals: {A~note}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {477--480},
year = {1998},
volume = {115},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a10/}
}
E. Pelantova; A. M. Perelomov. Diophantine equations related to quasicrystals: A note. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a10/
[1] H. Hasse, Number theory, Springer-Verlag, New York, 1980 | MR | Zbl
[2] Z. Masáková, J. Patera, E. Pelantová, On the minimal distance in quasicrystal, Submitted for publication
[3] L. Chen, R. V. Moody, J. Patera, “Non-crystallographic root systems”, Quasicrystals and discrete geometry, Fields Inst. Commun., ed. J. Patera (to appear) | MR