Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 323-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a nonlinear $\sigma$-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the $\operatorname {sh}$-Gordon equation and evaluate its exact and asymptotic solutions.
@article{TMF_1998_115_3_a0,
     author = {E. Sh. Gutshabash and V. D. Lipovskii and S. S. Nikulichev},
     title = {Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--348},
     year = {1998},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a0/}
}
TY  - JOUR
AU  - E. Sh. Gutshabash
AU  - V. D. Lipovskii
AU  - S. S. Nikulichev
TI  - Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 323
EP  - 348
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a0/
LA  - ru
ID  - TMF_1998_115_3_a0
ER  - 
%0 Journal Article
%A E. Sh. Gutshabash
%A V. D. Lipovskii
%A S. S. Nikulichev
%T Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 323-348
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a0/
%G ru
%F TMF_1998_115_3_a0
E. Sh. Gutshabash; V. D. Lipovskii; S. S. Nikulichev. Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 3, pp. 323-348. http://geodesic.mathdoc.fr/item/TMF_1998_115_3_a0/

[1] V. D. Lipovskii, S. S. Nikulichev, Vestn. LGU. Ser. Fizika, Khimiya, 1988, no. 4 (25), 61 | MR | Zbl

[2] E. Sh. Gutshabash, V. D. Lipovskii, Zap. nauchn. semin. LOMI, 180, 1990, 53

[3] E. Sh. Gutshabash, V. D. Lipovskii, TMF, 90:2 (1992), 259 | MR | Zbl

[4] G. G. Varzugin, E. Sh. Gutshabash, V. D. Lipovskii, TMF, 104:3 (1995), 513 | MR | Zbl

[5] E. Sh. Gutshabash, Vestn. LGU. Ser. Fizika, Khimiya, 1990, no. 4 (25), 84 | MR | Zbl

[6] E. Sh. Gutshabash, V. D. Lipovskii, Zap. nauchn. semin. LOMI, 199, 1992, 71 | Zbl

[7] E. Sh. Gutshabash, Zap. nauchn. semin. LOMI, 245, 1997, 149 | Zbl

[8] V. A. Belinskii, V. E. Zakharov, ZhETF, 75:6 (1978), 1953 | MR

[9] V. A. Belinskii, V. E. Zakharov, ZhETF, 77:1 (1979), 3 | MR

[10] D. Maison, Phys. Rev. Lett., 41:8 (1978), 521 | DOI | MR

[11] D. Maison, J. Math. Phys., 20:5 (1979), 871 | DOI | MR

[12] F. A. Bais, R. Sasaki, Nucl. Phys. B, 202 (1982), 522 | DOI | MR

[13] I. Hauser, F. J. Ernst, J. Math. Phys., 22:5 (1981), 1051 | DOI | MR | Zbl

[14] G. G. Varzugin, TMF, 111:3 (1997), 345 | DOI | MR | Zbl

[15] A. V. Mikhailov, A. I. Yaremchuk, Nucl. Phys. B, 202 (1982), 508 | DOI | MR

[16] A. V. Mikhailov, “Integrable magnetic models”, Solitons. Modern problems in condensed matter, V. 17, eds. Trulinger S. E., Pokrovskii V. L., Zakharov V. E, North. Holl. Publ. Co., Amsterdam, 1986

[17] R. Bekster, Tochno reshaemye modeli v staticticheskoi mekhanike, Mir, M., 1985 | MR

[18] Yu. A. Izyumov, Yu. N. Skryabin, Statisticheskaya mekhanika magnitouporyadochennykh sred, Nauka, M., 1987 | MR

[19] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[20] S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, TMF, 70:3 (1987), 323 | MR | Zbl

[21] L. D. Faddeev, L. A. Takhtadzhyan, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[22] Yu. A. Izyumov, Difraktsiya neitronov na dlinnoperiodicheskikh strukturakh, Energoatomizdat, M., 1987

[23] K. Pohlmeyer, Commun. Math. Phys., 46:3 (1976), 207 | DOI | MR | Zbl

[24] G. Joyce, D. Montgomeri, J. Plasma Phys., 10:1 (1973), 107 | DOI

[25] R. Jackiw, So-Young-Pi, Progr. Theor. Phys. Suppl., 107:1 (1992), 1 | DOI | MR

[26] A. I. Bobenko, UMN, 46:4 (1991), 3 | MR

[27] E. G. Poznyak, A. G. Popov, Dokl. RAN, 332:4 (1993), 418 | MR | Zbl

[28] B. S. Getmanov, Pisma v ZhETF, 25:2 (1977), 132

[29] I. V. Barashenkov, B. S. Getmanov, J. Math. Phys., 34:7 (1993), 3054 | DOI | MR | Zbl

[30] G. Ekker, Fizika polnostyu ionizirovannoi plazmy, Mir, M., 1974

[31] S. Yu. Dobrokhotov, V. P. Maslov, Zap. nauchn. semin. LOMI, 84, 1979, 35 | MR

[32] V. E. Chelnokov, M. G. Tseitlin, Phys. Lett. A, 99:4 (1983), 147 | DOI | MR

[33] M. D. Frank-Kamenetskii, V. V. Anshelevich, A. V. Lukashin, UFN, 151:4 (1987), 595 | DOI

[34] Ch. K. Saclioglu, J. Math. Phys., 25:11 (1984), 3214 | DOI | MR | Zbl

[35] D. Montgomery, G. Joyce, Phys. Fluids, 17:6 (1974), 1139 | DOI | MR

[36] M. Jaworski, D. Kaup, Direct and inverse scattering problem associated with elliptic sinh-Gordon equation, Preprint Ins. for Studies, INS, Potsdam, 1989 | MR

[37] A. B. Borisov, Nelineinye vozbuzhdeniya i dvumernye topologicheskie solitony v magnetikakh, Dokt. diss., In-t fiz. metallov, Sverdlovsk, 1986

[38] A. B. Borisov, V. V. Kiselev, Physica D, 31 (1988), 49 | DOI | MR | Zbl