Renormalization group in turbulence theory: Exactly solvable Heisenberg model
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 245-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exactly solvable Heisenberg model describing the spectral balance conditions for the energy of a turbulent liquid is investigated in the renormalization group (RG) framework. The model has RG symmetry with the exact RG functions (the $\beta$-function and the anomalous dimension $\gamma$) found in two different renormalization schemes. The solution to the RG equations coincides with the known exact solution of the Heisenberg model and is compared with the results from the $\varepsilon$ expansion, which is the only tool for describing more complex models of developed turbulence (the formal small parameter $\varepsilon$ of the RG expansion is introduced by replacing a $\delta$-function-like pumping function in the random force correlator by a powerlike function). The results, which are valid for asymptotically small $\varepsilon$, can be extrapolated to the actual value $\varepsilon=2$, and the few first terms of the $\varepsilon$ expansion already yield a reasonable numerical estimate for the Kolmogorov constant in the turbulence energy spectrum.
@article{TMF_1998_115_2_a6,
     author = {L. Ts. Adzhemyan and N. V. Antonov},
     title = {Renormalization group in turbulence theory: {Exactly} solvable {Heisenberg} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--262},
     year = {1998},
     volume = {115},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a6/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - N. V. Antonov
TI  - Renormalization group in turbulence theory: Exactly solvable Heisenberg model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 245
EP  - 262
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a6/
LA  - ru
ID  - TMF_1998_115_2_a6
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A N. V. Antonov
%T Renormalization group in turbulence theory: Exactly solvable Heisenberg model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 245-262
%V 115
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a6/
%G ru
%F TMF_1998_115_2_a6
L. Ts. Adzhemyan; N. V. Antonov. Renormalization group in turbulence theory: Exactly solvable Heisenberg model. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 245-262. http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a6/

[1] W. Heisenberg, Z. Phys., 124 (1948), 628 | DOI | MR | Zbl

[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[3] D. V. Shirkov, UMN, 49 (1994), 147 | MR | Zbl

[4] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon, Oxford, 1989 | MR

[5] C. De Dominicis, P. C. Martin, Phys. Rev. A, 19 (1979), 419 | DOI

[6] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, UFN, 166:12 (1996), 1257 | DOI

[7] R. H. Kraichnan, Phys. Rev. A, 25 (1982), 3281 ; Phys. Fluids, 30 (1987), 2400 | DOI | DOI | Zbl

[8] S. Chen, R. H. Kraichnan, Phys. Fluids. A, 1 (1989), 2019 | DOI | MR

[9] S. L. Woodruff, Phys. Fluids, 6 (1994), 3051 | DOI | MR | Zbl

[10] S. H. Lam, Phys. Fluids. A, 4 (5) (1992), 1007 | DOI | MR | Zbl

[11] G. L. Eyink, Phys. Fluids, 6 (1994), 3063 | DOI | MR | Zbl

[12] E. V. Teodorovich, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1987, no. 4, 29 ; ДАН СССР, 299 (1988), 836 ; Изв. РАН. Физика атмосферы и океана, 29 (1993), 149 | Zbl | Zbl | MR

[13] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, ZhETF, 95 (1989), 1272 ; Н. В. Антонов, Зап. научн. семин. ЛОМИ, 169, 1988, 18 | Zbl

[14] N. V. Antonov, S. V. Borisenok, V. I. Girina, TMF, 107 (1996), 47 | DOI | MR | Zbl

[15] N. V. Antonov, Zap. nauchn. semin. LOMI, 189, 1991, 15 ; Н. В. Антонов, Вестн. Санкт-Петербургского ун-та. Сер. физика, химия, 1992, No 3, 3 ; Л. Ц. Аджемян, Н. В. Антонов, Т. Л. Ким, ТМФ, 100 (1994), 382 | MR | Zbl | MR | Zbl

[16] L. Ts. Adzhemyan, A. N. Vasilev, Yu. M. Pismak, TMF, 57 (1983), 268 ; Л. Ц. Аджемян, А. Н. Васильев, М. Гнатич, ТМФ, 74 (1988), 180 | MR | Zbl | MR

[17] N. V. Antonov, S. V. Borisenok, V. I. Girina, TMF, 106 (1996), 92 | DOI | MR | Zbl

[18] N. V. Antonov, A. N. Vasilev, TMF, 110 (1997), 122 | DOI | MR | Zbl

[19] M. Avellaneda, A. J. Majda, Commun. Math. Phys., 131 (1990), 381 | DOI | MR | Zbl

[20] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, T. 2, Gidrometeoizdat, Sankt-Peterburg, 1996

[21] D. V. Shirkov, DAN SSSR, 263 (1982), 64 ; ТМФ, 60 (1984), 218 ; D. V. Shirkov, Int. J Mod. Phys. A, 3 (1988), 1321 | MR | MR | DOI

[22] V. F. Kovalev, V. V. Pustovalov, D. V. Shirkov, Gruppovoi analiz i renormgruppa, Soobschenie OIYaI R5-95-447, OIYaI, Dubna, 1995 | MR

[23] N. Goldenfeld, O. Martin, Y. Oono, F. Liu, Phys. Rev. Lett., 64 (1990), 1361 | DOI

[24] W. D. McComb, The Physics of Fluid Turbulence, Clarendon, Oxford, 1990 | MR

[25] Dzh. Kollinz, Perenormirovka, Mir, M., 1988 | MR

[26] V. Yakhot, S. A. Orszag, Phys. Rev. Lett., 57 (1986), 1722 | DOI

[27] W. P. Dannevik, V. Yakhot, S. A. Orszag, Phys. Fluids, 30 (1987), 2021 | DOI | MR | Zbl