The dressing chain of discrete symmetries and proliferation of nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 199-214

Voir la notice de l'article provenant de la source Math-Net.Ru

In the examples of sine-Gordon and Korteweg–de Vries (KdV) equations, we propose a direct method for using dressing chains (discrete symmetries) to proliferate integrable equations. We give a recurrent procedure (with a finite number of steps in general) that allows the step-by-step production of an integrable system and its $L$$A$ pair from the known $L$$A$ pair of an integrable equation. Using this algorithm, we reproduce a number of known results for integrable systems of the KdV type. We also find a new integrable equation of the sine-Gordon series and investigate its simplest soliton solution of the double $\pi$-kink type.
@article{TMF_1998_115_2_a3,
     author = {A. B. Borisov and S. A. Zykov},
     title = {The dressing chain of discrete symmetries and proliferation of nonlinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a3/}
}
TY  - JOUR
AU  - A. B. Borisov
AU  - S. A. Zykov
TI  - The dressing chain of discrete symmetries and proliferation of nonlinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 199
EP  - 214
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a3/
LA  - ru
ID  - TMF_1998_115_2_a3
ER  - 
%0 Journal Article
%A A. B. Borisov
%A S. A. Zykov
%T The dressing chain of discrete symmetries and proliferation of nonlinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 199-214
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a3/
%G ru
%F TMF_1998_115_2_a3
A. B. Borisov; S. A. Zykov. The dressing chain of discrete symmetries and proliferation of nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 199-214. http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a3/