Instantons and gravitation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 312-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Some problems related to using nonperturbative quantization methods in theories of gauge fields and gravitation are studied. The unification of interactions is considered in the context of the geometric theory of gauge fields. The notion of vacuum in the unified interaction theory and the role of instantons in the vacuum structure are considered. The relation between the definitions of instantons and the energy-momentum tensor of a gauge field and also the role played by the vacuum solutions to the Einstein equations in the definition of vacuum for gauge fields are demonstrated. The Schwarzschild solution, as well as the entire class of vacuum solutions to the Einstein equations, is a gravitational instanton even though the signature of the space-time metric is hyperbolic. Gravitation, including the Einstein version, is considered a special case of an interaction described by a non-Abelian gauge field.
@article{TMF_1998_115_2_a12,
     author = {N. P. Konopleva},
     title = {Instantons and gravitation theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--320},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a12/}
}
TY  - JOUR
AU  - N. P. Konopleva
TI  - Instantons and gravitation theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 312
EP  - 320
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a12/
LA  - ru
ID  - TMF_1998_115_2_a12
ER  - 
%0 Journal Article
%A N. P. Konopleva
%T Instantons and gravitation theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 312-320
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a12/
%G ru
%F TMF_1998_115_2_a12
N. P. Konopleva. Instantons and gravitation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a12/