Differential calculus for $q$-deformed twistors
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 177-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A “hort” version of the $q$-deformed differential calculus on the light cone using the twistor representation is proposed. The commutation relations between coordinates and momenta are obtained. The quasi-classical limit gives an exact shape for the off-shell shifting.
@article{TMF_1998_115_2_a1,
     author = {V. P. Akulov and S. A. Duplij and V. V. Chitov},
     title = {Differential calculus for $q$-deformed twistors},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--184},
     year = {1998},
     volume = {115},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a1/}
}
TY  - JOUR
AU  - V. P. Akulov
AU  - S. A. Duplij
AU  - V. V. Chitov
TI  - Differential calculus for $q$-deformed twistors
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 177
EP  - 184
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a1/
LA  - ru
ID  - TMF_1998_115_2_a1
ER  - 
%0 Journal Article
%A V. P. Akulov
%A S. A. Duplij
%A V. V. Chitov
%T Differential calculus for $q$-deformed twistors
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 177-184
%V 115
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a1/
%G ru
%F TMF_1998_115_2_a1
V. P. Akulov; S. A. Duplij; V. V. Chitov. Differential calculus for $q$-deformed twistors. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 2, pp. 177-184. http://geodesic.mathdoc.fr/item/TMF_1998_115_2_a1/

[1] J. Wess, B. Zumino, Nucl. Phys. (Proc. Suppl.). B, 18 (1990), 302 | DOI | MR

[2] S. L. Woronowicz, Commun. Math. Phys., 122 (1989), 125 | DOI | MR | Zbl

[3] I. Arefieva, I. Volovich, Quantum group particles and non-archimedian geometry, CERN TH-6137/91, 1991

[4] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, T. 1, Mir, M., 1990 | MR

[5] L. D. Faddeev, P. N. Pyatov, The differential calculus on linear quantum groups, , 1994 E-print hep-th/9402070 | MR

[6] V. P. Akulov, V. D. Gerschun, Matched reduction of differential calculus on quantum groups $gl_q(2,c)$, $sl_q (2,c)$ and $e_q (2)$, , 1995 E-print q-alg/9509030

[7] J. Wess, B. Zumino, A. Schirmacher, Z. Phys. C, 49 (1990), 317 | MR

[8] E. E. Demidov, UMN, 48:6 (1993), 39 | MR | Zbl

[9] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, V. 1, Amer. Math. Soc., Providence, 1961 | MR | Zbl

[10] S. Duplij, J. Math. Phys., 32 (1991), 2959 | DOI | MR | Zbl

[11] S. Duplij, J. Math. Phys., 38:2 (1997), 1035 | DOI | MR | Zbl

[12] B. M. Zupnik, TMF, 95 (1993), 403 | MR | Zbl

[13] L. L. Vaksman, L. I. Korogodsky, Harmonic analysis on quantum hyperboloids, Kiev preprint, ITP-90-27P

[14] L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Algebra i analiz, 1 (1990), 193 | MR | Zbl

[15] E. Cartan, La Theorie des Spineurs, Mercier, Paris, 1938

[16] R. Penrose, Math. Proc. Cambridge Philos. Soc., 51 (1955), 406 | DOI | MR | Zbl

[17] J. A. Azcarraga, P. P. Kulish, F. Rodenas, Quantum groups and deformed special relativity, FTUV 94-21, 1994 ; E-print hep-th/9405161 | MR