Statistical hydrodynamics of magnetic fluids. I. The nonequilibrium statistical operator method
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 132-153
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Zubarev nonequilibrium statistical operator is used to describe the generalized hydrodynamic state of a magnetic fluid in an external magnetic field. The magnetic fluid is modeled with “liquid-state” and '“magnetic” subsystems described using the classical and quantum statistics methods respectively. Equations of the generalized statistical hydrodynamics for a magnetic fluid in a nonhomogeneous external magnetic field with the Heisenberg spin interaction are derived for “liquid-state” and “magnetic” subsystems characterized by different nonequilibrium temperatures. These equations can be used to describe both the weakly and strongly nonequilibrium states. Some limiting cases are analyzed in which the variables of one of the subsystems can be formally neglected
@article{TMF_1998_115_1_a8,
     author = {I. M. Mryglod and M. V. Tokarchuk},
     title = {Statistical hydrodynamics of magnetic fluids. {I.~The} nonequilibrium statistical operator method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {132--153},
     year = {1998},
     volume = {115},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a8/}
}
TY  - JOUR
AU  - I. M. Mryglod
AU  - M. V. Tokarchuk
TI  - Statistical hydrodynamics of magnetic fluids. I. The nonequilibrium statistical operator method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 132
EP  - 153
VL  - 115
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a8/
LA  - ru
ID  - TMF_1998_115_1_a8
ER  - 
%0 Journal Article
%A I. M. Mryglod
%A M. V. Tokarchuk
%T Statistical hydrodynamics of magnetic fluids. I. The nonequilibrium statistical operator method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 132-153
%V 115
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a8/
%G ru
%F TMF_1998_115_1_a8
I. M. Mryglod; M. V. Tokarchuk. Statistical hydrodynamics of magnetic fluids. I. The nonequilibrium statistical operator method. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 132-153. http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a8/

[1] K. Khandrikh, S. Kobe, Amorfnye ferro- i ferrimagnetiki, Mir, M., 1982

[2] 6th International Conference on Magnetic Fluids, Programme and Abstracts (Paris, 1992, July 20–24), Univ. Curie Press, Paris, 1992

[3] K. Shinichi, F. Fumio, O. Masaaki, Exp. Therm. and Fluids Sci., 5:5 (1992), 641 | DOI

[4] Y. Ido, T. Tanahashi, J. Phys. Soc. Jap., 60:2 (1991), 466 | DOI

[5] Y. Ido, T. Tanahaschi, M. Kiya, “A complete set of basic equation for magnetic fluids”, 6th International Conference on Magnetic Fluids, Programme and Abstracts (Paris, 1992, July 20–24), Univ. Curie Press, Paris, 1992

[6] C. Saluena, A. Peves-Madrid, J. M. Rubi, “The viscosity of a suspension of elongated magnetic dipoles”, 6th International Conference on Magnetic Fluids, Programme and Abstracts (Paris, 1992, July 20–24), Univ. Curie Press, Paris, 1992

[7] Yu. L. Raikher, V. V. Rusakov, “Orientational dynamics of a magnetic fluid with a viscoelastic base”, 6th International Conference on Magnetic Fluids, Programme and Abstracts (Paris, 1992, July 20–24), Univ. Curie Press, Paris, 1992

[8] B. N. Felderhof, R. B. Jones, Phys. Rev. E, 48:2 (1993), 1142 | DOI

[9] B. N. Felderhof, R. B. Jones, Phys. Rev. E, 48:2 (1993), 1084 | DOI

[10] T. K. Kalaf, T. M. Wu, Phys. Rev. B, 18:1 (1978), 448 | DOI

[11] M. Muller, H.-J. Guntherodt, J. Magn. Mater., 15:18 (1980), 1345

[12] I. A. Vakarchuk, Yu. K. Rudavskii, G. V. Ponedilok, Mikroskopicheskaya teoriya zhidkogo sostoyaniya sistemy magnitnykh atomov, Preprint ITF-80-135P, ITF, Kiev, 1980

[13] I. A. Vakarchuk, Yu. K. Rudavskii, G. V. Ponedilok, UFZh, 27:9 (1982), 1414 | MR

[14] I. A. Vakarchuk, G. V. Ponedilok, Yu. K. Rudavskii, TMF, 58:3 (1984), 445 | MR

[15] I. A. Vakarchuk, I. F. Margolych, Teoriya mnogosortnykh neuporyadochennykh magnetikov. Svobodnaya energiya, Preprint ITF-83-163P, ITF, Kiev, 1984

[16] I. A. Vakarchuk, I. F. Margolych, TMF, 72:3 (1987), 462

[17] I. A. Akhiezer, I. T. Akhiezer, ZhETF, 86:1 (1984), 120 | MR

[18] I. A. Akhiezer, I. T. Akhiezer, FTT, 29:7 (1987), 2167

[19] V. I. Kalikmanov, Physica A, 183 (1992), 25 | DOI

[20] I. M. Mryglod, M. V. Tokarchuk, Uravneniya obobschennoi gidrodinamiki dlya zhidkikh magnetikov, Preprint IFKS-93-5U, IFKS AN Ukrainy, Kiev, 1993

[21] I. M. Mryglod, M. V. Tokarchuk, Cond. Math. Phys., 1993, no. 2, 102

[22] I. M. Mryglod, M. V. Tokarchuk, UFZh., 39:7–8 (1994), 838

[23] I. M. Mryglod, M. V. Tokarchuk, R. Folk, Physica A, 220 (1995), 325 | DOI

[24] I. M. Mryglod, R. Folk, Physica A, 234 (1996), 129 | DOI

[25] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[26] D. N. Zubarev, “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 131 | MR

[27] V. P. Kalashnikov, M. I. Auslender, FMM, 44:4 (1977), 710 | MR

[28] J. P. Boon, S. Yip, Molecular Hydrodynamic, McGraw-Hill, New York, 1980 | MR

[29] I. M. Mryglod, M. V. Tokarchuk, “K statisticheskoi gidrodinamike prostykh zhidkostei”, Voprosy atomnoi nauki i tekhniki. Ser. yaderno-fizicheskie issledovaniya, no. 3 (24), KhFTI, Kharkov, 1992, 134

[30] I. M. Mryglod, M. V. Tokarchuk, K statisticheskoi gidrodinamike prostykh zhidkostei. Obobschennye koeffitsienty perenosa, Preprint IFKS-91-6U, IFKS AN Ukrainy, Kiev, 1991

[31] B. Robertson, Phys. Rev., 144 (1966), 151 ; 160 (1967), 175 | DOI | MR | Zbl | DOI