A probability wave description of stochastic variables whose means satisfy a system of difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 56-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Probability wave theory is used to study the behavior of stochastic vectors whose means satisfy ordinary first-order difference equations. Difference-differential equations are given for the probability waves corresponding to the difference model for the means. Analogues of the Liouville and Ehrenfest theorems are proved. A first-order difference equation for the evolution of the component dispersion of the random vector is obtained. An algorithm for solving the wave equations is proposed. The results from analyzing some solutions to the probability wave equations are presented. The relationship of the finite-difference method to the manifestation of the particle-wave dualism is discussed.
@article{TMF_1998_115_1_a3,
     author = {I. A. Solov'ev},
     title = {A~probability wave description of stochastic variables whose means satisfy a~system of difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {56--76},
     year = {1998},
     volume = {115},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a3/}
}
TY  - JOUR
AU  - I. A. Solov'ev
TI  - A probability wave description of stochastic variables whose means satisfy a system of difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 56
EP  - 76
VL  - 115
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a3/
LA  - ru
ID  - TMF_1998_115_1_a3
ER  - 
%0 Journal Article
%A I. A. Solov'ev
%T A probability wave description of stochastic variables whose means satisfy a system of difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 56-76
%V 115
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a3/
%G ru
%F TMF_1998_115_1_a3
I. A. Solov'ev. A probability wave description of stochastic variables whose means satisfy a system of difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 56-76. http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a3/

[1] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[2] K. V. Gardiner, Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR | Zbl

[3] G. Khaken, Sinergetika. Ierarkhii neustoichivostei v samoorganizuyuschikhsya sistemakh i ustroistvakh, Mir, M., 1985 | MR

[4] L. Glas, M. Meki, Ot chasov k khaosu. Ritmy zhizni, Mir, M., 1991 | MR | Zbl

[5] G. Yu. Riznichenko, A. B. Rubin, Matematicheskie modeli biologicheskikh produktsionnykh protsessov, Izd-vo MGU, M., 1993 | MR

[6] I. A. Solovev, TMF, 111:3 (1997), 356–368 | DOI | MR | Zbl

[7] I. A. Solovev, Vestn. MEI, 1995, no. 6, 109–118

[8] I. A. Solovev, “O volnovykh resheniyakh raznostnykh uravnenii v prostranstve nepreryvnogo izmeneniya nezavisimykh argumentov”, Metody i algoritmy parametricheskogo analiza lineinykh i nelineinykh modelei perenosa, Sb. nauchn. tr. MGOPI, no. 12, 1996, 81–82

[9] I. A. Solovev, “Volnovye stokhasticheskie komponenty reshenii raznostnykh uravnenii perenosa teploty i massy. Vychislitelnyi eksperiment v zadachakh teploobmena i teploperedachi”, Trudy 3-go Minskogo Mezhdunarodnogo foruma po teplomassoobmenu, T. 9. Chast 1 (20–24 maya 1996 g.), ANK ITMO ANB, Minsk, 1996, 209–213

[10] L. de Broil, Sootnoshenie neopredelennostei Geizenberga i veroyatnostnaya interpretatsiya volnovoi mekhaniki, Mir, M., 1986 | MR

[11] L. Shiff, Kvantovaya mekhanika, IIL, M., 1959

[12] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[13] Yu. P. Boglaev, Vychislitelnaya matematika i programmirovanie, Vysshaya shkola, M., 1990

[14] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR