The isomorphism between two-dimensional conformal field theories with the affine-$sl(2)$ and the $N=2$ superconformal symmetry algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 29-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the one-to-one correspondence between two-dimensional conformal field theories with the affine-$sl(2)$ and the $N=2$ superconformal symmetry algebras. We obtain the formulas relating zero-norm states in the two theories and the formulas expressing the partition function of the affine-$sl(2)$ theory through the partition function of the theory with the $N=2$ superconformal symmetry algebra, and vice versa.
@article{TMF_1998_115_1_a1,
     author = {I. Yu. Tipunin},
     title = {The isomorphism between two-dimensional conformal field theories with the affine-$sl(2)$ and the $N=2$ superconformal symmetry algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {29--45},
     year = {1998},
     volume = {115},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a1/}
}
TY  - JOUR
AU  - I. Yu. Tipunin
TI  - The isomorphism between two-dimensional conformal field theories with the affine-$sl(2)$ and the $N=2$ superconformal symmetry algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 29
EP  - 45
VL  - 115
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a1/
LA  - ru
ID  - TMF_1998_115_1_a1
ER  - 
%0 Journal Article
%A I. Yu. Tipunin
%T The isomorphism between two-dimensional conformal field theories with the affine-$sl(2)$ and the $N=2$ superconformal symmetry algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 29-45
%V 115
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a1/
%G ru
%F TMF_1998_115_1_a1
I. Yu. Tipunin. The isomorphism between two-dimensional conformal field theories with the affine-$sl(2)$ and the $N=2$ superconformal symmetry algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a1/

[1] E. Witten, Commun. Math. Phys., 92 (1984), 455 | DOI | MR | Zbl

[2] A. M. Polyakov, Mod. Phys. Lett. A, 2 (1987), 893 | DOI | MR

[3] V. G. Knizhnik, A. M. Polyakov, A. B. Zamolodchikov, Mod. Phys. Lett. A, 3 (1988), 819 | DOI | MR

[4] M. Ademollo et al., Phys. Lett. B, 62 (1976), 105 ; Nucl. Phys. B, 111 (1976), 77 ; Phys. Lett. B, 363 (1995), 166 | DOI | DOI | DOI | MR

[5] W. Lerche, C. Vafa, N. P. Warner, Nucl. Phys. B, 324 (1989), 427 | DOI | MR

[6] B. Gato-Rivera, A. M. Semikhatov, Phys. Lett. B, 293 (1992), 72 | DOI | MR

[7] M. Bershadsky, W. Lerche, D. Nemeschansky, N. P. Warner, Nucl. Phys. B, 401 (1993), 304–347 | DOI | MR | Zbl

[8] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[9] D. H. Friedan, E. J. Martinec, S. H. Shenker, Nucl. Phys. B, 271 (1986), 93 | DOI | MR

[10] V. G. Kač, “Covariant form for infinite-dimensional Lie algebras and superalgebras”, Lect. Notes in Phys., 94, 1979, 441 | DOI | MR

[11] B. L. Feigin, D. B. Fuks, Funkts. analiz i ego prilozh., 16:2 (1982), 47 | MR | Zbl

[12] A. M. Semikhatov, Mod. Phys. Lett. A, 9 (1994), 1867 | DOI | MR | Zbl

[13] B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between Chain Categories of Representations of Affine $sl(2)$ and $N=2$ Superconformal Algebras, E-print hep-th/9701043 | MR

[14] K. Bardakçi, M. B. Halpern, Phys. Rev. D, 3 (1971), 2493 | DOI | MR

[15] V. G. Kač, Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR

[16] V. G. Kač, D. A. Kazhdan, Adv. Math., 34 (1979), 97 | DOI | MR | Zbl

[17] F. G. Malikov, B. L. Feigin, D. B. Fuks, Funkts. analiz i ego prilozh., 20:2 (1986), 25 | MR | Zbl

[18] A. Schwimmer, N. Seiberg, Phys. Lett. B, 184 (1987), 191 | DOI | MR

[19] W. Boucher, D. Friedan, A. Kent, Phys. Lett. B, 172 (1986), 316 | DOI | MR | Zbl

[20] A. M. Semikhatov, I. Yu. Tipunin, Int. J Mod. Phys. A, 11 (1996), 4597 | DOI | MR | Zbl

[21] A. M. Semikhatov, I. Yu. Tipunin, Singular vectors of the $N=2$ Superconformal Algebra via the Algebraic Continuation Approach, E-print hep-th/9604176 | MR

[22] A. M. Semikhatov, I. Yu. Tipunin, Structure of Verma Modules over the $N=2$ Superconformal Algebra, ; Commun. Math. Phys., 1998 (to appear) E-print hep-th/9704111 | MR

[23] P. Di Vecchia, J. L. Petersen, M. Yu, H. B. Zheng, Phys. Lett. B, 174 (1986), 280 | DOI | MR

[24] Y. Kazama, H. Suzuki, Nucl. Phys. B, 321 (1989), 232 | DOI | MR