Homogeneous St\"ackel-type systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 3-28
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of Hamiltonian dynamic systems integrated by the variable separation method is considered. The integration for this class is the inversion of an Abel mapping on hyperelliptic curves. We prove that the derivative of the Abel mapping is the Stäckel matrix, which determines a diagonal Riemannian metric and curvilinear orthogonal coordinate systems in a flat space. Lax representations with the spectral parameter are constructed. The corresponding classical $r$-matrices are dynamic. It is shown how the class of pointwise canonical transformations can be naturally generalized using the Abel integral reduction theory.
@article{TMF_1998_115_1_a0,
author = {A. V. Tsiganov},
title = {Homogeneous {St\"ackel-type} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--28},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a0/}
}
A. V. Tsiganov. Homogeneous St\"ackel-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a0/