Homogeneous Stäckel-type systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 3-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of Hamiltonian dynamic systems integrated by the variable separation method is considered. The integration for this class is the inversion of an Abel mapping on hyperelliptic curves. We prove that the derivative of the Abel mapping is the Stäckel matrix, which determines a diagonal Riemannian metric and curvilinear orthogonal coordinate systems in a flat space. Lax representations with the spectral parameter are constructed. The corresponding classical $r$-matrices are dynamic. It is shown how the class of pointwise canonical transformations can be naturally generalized using the Abel integral reduction theory.
@article{TMF_1998_115_1_a0,
     author = {A. V. Tsiganov},
     title = {Homogeneous {St\"ackel-type} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--28},
     year = {1998},
     volume = {115},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a0/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Homogeneous Stäckel-type systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 3
EP  - 28
VL  - 115
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a0/
LA  - ru
ID  - TMF_1998_115_1_a0
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Homogeneous Stäckel-type systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 3-28
%V 115
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a0/
%G ru
%F TMF_1998_115_1_a0
A. V. Tsiganov. Homogeneous Stäckel-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 115 (1998) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TMF_1998_115_1_a0/

[1] P. Stäckel, Comptus Rendus (Paris), 116 (1893), 485; 1284 ; 121 (1895), 489 | Zbl

[2] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[3] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Izd. 3-e, Nauka, M., 1989 | MR

[4] L. P. Eisenhart, Ann. Math., 35 (1934), 284 | DOI | MR | Zbl

[5] V. E. Zakharov, Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of the hydrodynamic type. Part I: Integration of the Lame' equation, Preprint ITP/96, 1996 | MR

[6] I. M. Krichever, Algebraic-geometrical $n$-orthogonal curvilinear coordinate systems and solutions to the associativity equations, , 1996 E-print hep-th/9611158 | MR

[7] A. V. Razumov, M. V. Saveliev, Riemannian manifolds with diagonal metric. The Lame' and Bourlet systems, , 1996 E-print solv-int/9612004

[8] E. K. Sklyanin, Progr. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl

[9] J. P. Francoise, Bull. Amer. Math. Soc. (New series), 17 (1987), 301 | DOI | MR | Zbl

[10] I. M. Krichever, D. H. Phong, On the integrable geometry of soliton equations and $n=2$ supersymmetric gauge theories, , 1996 ; Symplectic forms in the theory of solitons, , 1997 E-print hep-th/9604199E-print hep-th/9708170 | MR

[11] B. A. Dubrovin, UMN, 36 (1981), 11 | MR

[12] I. M. Krichever, Commun. Pure Appl. Math., 47 (1994), 40 | DOI | MR

[13] N. N. Nekhoroshev, Tr. Mosk. matem. ob-va, 26, 1972, 181 ; H. J. Duistermaat, Commun. Pure Appl. Math., 23 (1980), 687 ; H. Knörer, J. Reine Angew. Math., 355 (1985), 67 | MR | Zbl | DOI | MR | MR

[14] D. Mamford, Lektsii po teta-funktsiyam, Mir, M., 1988 | MR

[15] E. G. Kalnins, V. B. Kuznetsov, W. Miller, Jr., J. Math. Phys., 35 (1994), 1710 | DOI | MR | Zbl

[16] F. Calogero, J. P. Francoise, J. Phys. A, 30 (1997), 211 | DOI | MR | Zbl

[17] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[18] A. V. Tsiganov, Automorphisms of $sl(2)$ and dynamical $r$-matrices, , 1996 E-print solv-int/9610003 | MR

[19] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Teoretiko-gruppovye metody v teorii konechnomernykh integriruemykh sistem”, Dinamicheskie sistemy–VII, Itogi nauki i tekhniki. Sovr. probl. matem. Fund. napravleniya, 16, VINITI, M., 1987, 119

[20] P. P. Kulish, S. Rauch-Wojciechowski, A. V. Tsiganov, J. Math. Phys., 37 (1996), 3365 | DOI | MR

[21] A. V. Tsyganov, TMF, 112 (1997), 428 | DOI | MR | Zbl

[22] N. Ercolani, Commun. Pure Appl. Math., 49 (1989), 87 | MR | Zbl

[23] S. J. Alber, Commun. Pure Appl. Math., 34 (1981), 252 | MR

[24] M. S. Alber, R. Camassa, D. D. Holm, J. E. Marsden, Lett. Math. Phys., 32 (1995), 137 | DOI | MR

[25] S. P. Novikov, A. P. Veselov, DAN SSSR, 266:3 (1982), 533 ; Тр. МИАН, 165, 1984, 49 | MR | Zbl | MR | Zbl

[26] V. E. Zakharov, L. D. Faddeev, Funkts. analiz i ego prilozh., 5 (1971), 18 | Zbl

[27] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR

[28] E. G. Kalnins, Separation of Variables for Riemann Spaces of Constant Curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific $\$ Technical, New York, 1986 | MR | Zbl

[29] E. G. Kalnins, S. Benenti, W. Miller, Jr., J. Math. Phys., 38 (1997), 2345 | DOI | MR | Zbl

[30] A. Krazer, Lehrbuch der Thetafunktionen, Teübner, Leipzig, 1903 ; H. F. Baker, Abels theorem and allied theory including the theory of theta functions, Cambridge Univ.Press, Cambridge, 1897 | MR | Zbl

[31] V. Z. Enolskii, M. Salerno, J. Phys. A, 17 (1996), L425 | DOI | MR

[32] S. Rauch-Wojciechowski, A. V. Tsiganov, J. Phys. A, 29 (1996), 7769 | DOI | MR | Zbl