Nonlinear localized waves in a medium with nonlocal interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 366-379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Soliton solutions are found for nonlinear integro-differential equations with a type $\lambda/(\tau-\tau')$ kernel used to describe particle tunneling and magnetic and superconducting vortices in a medium with nonlocal interaction. The Fourier transform method is applied to derive asymptotic formulas for even and odd localized solutions. Analytical solutions are found for particular parameter values. A complete pattern is constructed for the behavior of soliton solutions in an arbitrary range of the interaction parameter $\lambda$ by means of numerical calculations
@article{TMF_1998_114_3_a3,
     author = {V. I. Korneev and N. E. Kulagin and A. F. Popkov},
     title = {Nonlinear localized waves in a~medium with nonlocal interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {366--379},
     year = {1998},
     volume = {114},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/}
}
TY  - JOUR
AU  - V. I. Korneev
AU  - N. E. Kulagin
AU  - A. F. Popkov
TI  - Nonlinear localized waves in a medium with nonlocal interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 366
EP  - 379
VL  - 114
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/
LA  - ru
ID  - TMF_1998_114_3_a3
ER  - 
%0 Journal Article
%A V. I. Korneev
%A N. E. Kulagin
%A A. F. Popkov
%T Nonlinear localized waves in a medium with nonlocal interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 366-379
%V 114
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/
%G ru
%F TMF_1998_114_3_a3
V. I. Korneev; N. E. Kulagin; A. F. Popkov. Nonlinear localized waves in a medium with nonlocal interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 366-379. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/

[1] Yu. M. Aliev, V. P. Silin, S. A. Urupin, Superconductivity, 5 (1992), 230

[2] A. Gurevich, Phys. Rev. B, 46 (1992), 230 | DOI

[3] G. L. Alfimov, A. F. Popkov, Phys. Rev. B, 52 (1995), 4503 | DOI

[4] Yu. M. Ivanchenko, T. K. Soboleva, Phys. Lett. A, 147 (1990), 65 | DOI

[5] R. G. Mints, I. B. Shapiro, Phys. Rev. B, 51 (1995), 3054 | DOI

[6] A. O. Caldeira, A. J. Leggett, Ann. Phys. (NY), 149 (1984), 374 | DOI

[7] A. O. Caldeira, A. J. Leggett, Physica A, 121 (1983), 587 | DOI | MR | Zbl

[8] A. Garg, Phys. Rev. Lett., 70:10 (1993), 1541 | DOI

[9] A. Garg, G. H. Kim, Phys. Rev. B, 43 (1991), 712 | DOI

[10] C. E. Stamp, Physica B, 197 (1994), 133 | DOI

[11] A. P. Malozemoff, J. C. Slonszewskii, Magnetic Domain Walls in Bubble Materials, Acad. Press, New York, 1979

[12] N. E. Kulagin, A. F. Popkov, Pisma v ZhETF, 43:4 (1986), 197

[13] B. E. Ivanov, N. E. Kulagin, K. A. Safaruan, Physica B, 202 (1994), 193 | DOI

[14] N. N. Akhmediev, V. I. Korneev, Yu. V. Kuzmenko, ZhETF, 88:1 (1985), 107

[15] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl