Nonlinear localized waves in a~medium with nonlocal interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 366-379

Voir la notice de l'article provenant de la source Math-Net.Ru

Soliton solutions are found for nonlinear integro-differential equations with a type $\lambda/(\tau-\tau')$ kernel used to describe particle tunneling and magnetic and superconducting vortices in a medium with nonlocal interaction. The Fourier transform method is applied to derive asymptotic formulas for even and odd localized solutions. Analytical solutions are found for particular parameter values. A complete pattern is constructed for the behavior of soliton solutions in an arbitrary range of the interaction parameter $\lambda$ by means of numerical calculations
@article{TMF_1998_114_3_a3,
     author = {V. I. Korneev and N. E. Kulagin and A. F. Popkov},
     title = {Nonlinear localized waves in a~medium with nonlocal interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {366--379},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/}
}
TY  - JOUR
AU  - V. I. Korneev
AU  - N. E. Kulagin
AU  - A. F. Popkov
TI  - Nonlinear localized waves in a~medium with nonlocal interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 366
EP  - 379
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/
LA  - ru
ID  - TMF_1998_114_3_a3
ER  - 
%0 Journal Article
%A V. I. Korneev
%A N. E. Kulagin
%A A. F. Popkov
%T Nonlinear localized waves in a~medium with nonlocal interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 366-379
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/
%G ru
%F TMF_1998_114_3_a3
V. I. Korneev; N. E. Kulagin; A. F. Popkov. Nonlinear localized waves in a~medium with nonlocal interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 366-379. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/