Nonlinear localized waves in a~medium with nonlocal interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 366-379
Voir la notice de l'article provenant de la source Math-Net.Ru
Soliton solutions are found for nonlinear integro-differential equations with a type
$\lambda/(\tau-\tau')$ kernel used to describe particle tunneling and magnetic and superconducting vortices in a medium with nonlocal interaction. The Fourier transform method is applied to derive asymptotic formulas for even and odd localized solutions. Analytical solutions are found for particular parameter values. A complete pattern is constructed for the behavior of soliton solutions in an arbitrary range of the interaction parameter $\lambda$ by means of numerical calculations
@article{TMF_1998_114_3_a3,
author = {V. I. Korneev and N. E. Kulagin and A. F. Popkov},
title = {Nonlinear localized waves in a~medium with nonlocal interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {366--379},
publisher = {mathdoc},
volume = {114},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/}
}
TY - JOUR AU - V. I. Korneev AU - N. E. Kulagin AU - A. F. Popkov TI - Nonlinear localized waves in a~medium with nonlocal interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 366 EP - 379 VL - 114 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/ LA - ru ID - TMF_1998_114_3_a3 ER -
V. I. Korneev; N. E. Kulagin; A. F. Popkov. Nonlinear localized waves in a~medium with nonlocal interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 366-379. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a3/