$p$-Adic dynamic systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 349-365

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamic systems in non-Archimedean number fields (i. e. fields with non-Archimedean valuations) are studied. Results are obtained for the fields of $p$-adic numbers and complex $p$-adic numbers. Simple $p$-adic dynamic systems have a very rich structure–attractors, Siegel disks, cycles, and a new structure called a “fuzzy cycle”. The prime number $p$ plays the role of a parameter of the $p$-adic dynamic system. Changing $p$ radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.
@article{TMF_1998_114_3_a2,
     author = {S. A. Albeverio and B. Tirozzi and A. Yu. Khrennikov and S. de Smedt},
     title = {$p${-Adic} dynamic systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {349--365},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - B. Tirozzi
AU  - A. Yu. Khrennikov
AU  - S. de Smedt
TI  - $p$-Adic dynamic systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 349
EP  - 365
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/
LA  - ru
ID  - TMF_1998_114_3_a2
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A B. Tirozzi
%A A. Yu. Khrennikov
%A S. de Smedt
%T $p$-Adic dynamic systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 349-365
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/
%G ru
%F TMF_1998_114_3_a2
S. A. Albeverio; B. Tirozzi; A. Yu. Khrennikov; S. de Smedt. $p$-Adic dynamic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 349-365. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/