$p$-Adic dynamic systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 349-365
Voir la notice de l'article provenant de la source Math-Net.Ru
Dynamic systems in non-Archimedean number fields (i. e. fields with non-Archimedean valuations) are studied. Results are obtained for the fields of $p$-adic numbers and complex $p$-adic numbers. Simple $p$-adic dynamic systems have a very rich structure–attractors, Siegel disks, cycles, and a new structure called a “fuzzy cycle”. The prime number $p$ plays the role of a parameter of the $p$-adic dynamic system. Changing $p$ radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.
@article{TMF_1998_114_3_a2,
author = {S. A. Albeverio and B. Tirozzi and A. Yu. Khrennikov and S. de Smedt},
title = {$p${-Adic} dynamic systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {349--365},
publisher = {mathdoc},
volume = {114},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/}
}
TY - JOUR AU - S. A. Albeverio AU - B. Tirozzi AU - A. Yu. Khrennikov AU - S. de Smedt TI - $p$-Adic dynamic systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 349 EP - 365 VL - 114 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/ LA - ru ID - TMF_1998_114_3_a2 ER -
S. A. Albeverio; B. Tirozzi; A. Yu. Khrennikov; S. de Smedt. $p$-Adic dynamic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 349-365. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a2/