@article{TMF_1998_114_3_a10,
author = {G. A. Sardanashvily},
title = {Background geometry in the gauge theory of gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {470--480},
year = {1998},
volume = {114},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a10/}
}
G. A. Sardanashvily. Background geometry in the gauge theory of gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 470-480. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a10/
[1] R. Geroch, J. Math. Phys., 9 (1968), 1739 | DOI | MR | Zbl
[2] H. Lawson, M.-L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, 1989 | MR
[3] J. Crawford, J. Math. Phys., 32 (1991), 576 | DOI | MR | Zbl
[4] S. Avis, C. Isham, Commun. Math. Phys., 72 (1980), 103 | DOI | MR
[5] I. Benn, R. Tucker, An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, 1987 | MR
[6] R. Zulanke, P. Vintgen, Differentsialnaya geometriya i rassloeniya, Mir, M., 1975
[7] F. Gordejuela, J. Masqué, J. Phys. A, 28 (1995), 497 | DOI | MR | Zbl
[8] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR
[9] D. D. Ivanenko, P. I. Pronin, G. A. Sardanashvili, Kalibrovochnaya teoriya gravitatsii, Izd-vo MGU, M., 1985 | MR
[10] G. Sardanashvily, Int. J Theor. Phys., 30 (1991), 721 | DOI | MR | Zbl
[11] G. Sardanashvily, O. Zakharov, Gauge gravitation theory, World Scientific, Singapore, 1992 | MR
[12] G. Sardanashvily, J. Math. Phys., 33 (1992), 1546 | DOI | MR
[13] G. Sardanashvily, Class. Quantum. Gravit., 14 (1997), 1371 | DOI | MR
[14] G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Hamiltonian and Lagrangian Methods in Field Theory, World Scientific, Singapore, 1997 | MR | Zbl
[15] L. Dabrowski, R. Percacci, Commun. Math. Phys., 106 (1986), 691 | DOI | MR | Zbl
[16] S. Switt, J. Math. Phys., 34 (1993), 3825 | DOI | MR
[17] F. Hehl, J. McCrea, E. Mielke, Y. Ne'eman, Phys. Rep., 258 (1995), 1 | DOI | MR
[18] G. Sardanashvily, “Relativistic theory of gravity: Gauge approach”, Proceedings of the XIX Workshop on High Energy Physics and Field Theory (Protvino, 1996), IHEP Press, Protvino, 1997, 184
[19] A. A. Logunov, M. A. Mestvirishvili, Relyativistskaya teoriya gravitatsii, Nauka, M., 1989 | MR
[20] A. A. Logunov, Relyativistskaya teoriya gravitatsii i printsip Makha, Izd. IFVE, Protvino, 1996
[21] G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scientific, Singapore, 1995 | MR
[22] G. A. Sardanashvili, Matematicheskie metody teorii polya. T. I. Geometriya i klassicheskie polya, URSS, M., 1996 | MR | Zbl
[23] A. Aringazin, A. Mikhailov, Class. Quantum. Gravit., 8 (1991), 1685 | DOI | MR | Zbl
[24] G. Sardanashvily, J. Math. Phys., 38 (1997), 847 | DOI | MR | Zbl
[25] G. Giachetta, G. Sardanashvily, Class. Quantum. Gravit., 13 (1996), L67 | DOI | MR | Zbl
[26] J. Novotný, “On the conservation laws in General Relativity”, Geometrical Methods in Physics, Proceeding of the Conference on Differential Geometry and its Applications (Czechoslovakia, 1983), ed. D. Krupka, University of J. E. Purkyně, Brno, 1984, 207 | MR
[27] J. Novotný, Int. J Theor. Phys., 32 (1993), 1033 | DOI | MR | Zbl
[28] A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Gen. Rel. Grav., 26 (1994), 637 | DOI | MR | Zbl