An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 337-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the relation between the algebra $U_q(\widehat {sl}_2)$ and the $q$-deformation of the Virasoro algebra. We calculate the BRST-operator of the Drinfeld–Sokolov reduction and its cohomology
@article{TMF_1998_114_3_a1,
     author = {S. V. Kryukov},
     title = {An analogue of the quantum {Drinfeld{\textendash}Sokolov} {Hamiltonian} reduction for deformed algebras. {The} $U_{q}(\widehat {sl}_{2})$ case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--348},
     year = {1998},
     volume = {114},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/}
}
TY  - JOUR
AU  - S. V. Kryukov
TI  - An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 337
EP  - 348
VL  - 114
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/
LA  - ru
ID  - TMF_1998_114_3_a1
ER  - 
%0 Journal Article
%A S. V. Kryukov
%T An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 337-348
%V 114
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/
%G ru
%F TMF_1998_114_3_a1
S. V. Kryukov. An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/

[1] B. Feigin, E. Frenkel, Affine Kač–Moody Algebras at the Critical Level and Gelfand–Dikii Algebras, Preprint Mathematical Sciences Research Institute 04029-91, April, 1991, Berkeley, California, USA | MR

[2] B. Drinfeld, “Quantum Groups”, Proceedings of International Congress of Mathematicians, Berkeley, California, USA, 1986 | MR

[3] E. Frenkel, N. Reshetikhin, Quantum Affine Algebras and Deformation of the Virasoro and $W$-algebras, Preprint, Department of Mathematics, Harvard University, Cambridge, USA, 1995 ; E-print q-alg 9505025 | MR

[4] J. Shiraishi, H. Kubo, H. Awata, S. Odake, A Quantum Deformation of the Virasoro Algebra and the Macdonald Symmetric Functions, Preprint, Department of Mathematics, Harvard University, Cambridge, USA, 1995 ; E-print q-alg 9507034 | MR

[5] B. Feigin, E. Frenkel, Phys. Lett. B, 246:1–2 (1990), 75 ; B. Kostant, S. Steruberg, Ann. Phys., 176 (1987), 49 | DOI | MR | Zbl | DOI | MR | Zbl

[6] E. Frenkel, $W$-algebras and Langland–Drinfeld Correspondence, Preprint, Harvard University, Cambridge, USA, 1991 | MR

[7] V. G. Drinfeld, DAN SSSR, 296:1 (1987), 13

[8] J. Shiraishi, Phys. Lett. A, 171 (1992), 243 | DOI | MR

[9] M. Wakimoto, Commun. Math. Phys., 104 (1986), 605 | DOI | MR | Zbl

[10] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[11] B. Feigin, E. Frenkel, Quantum $W$-algebras and elliptic algebras, E-print hep-th 9508009 | MR

[12] I. B. Frenkel, N. H. Jing, Proc. Nat. Acad. Sci. USA, 85 (1988), 9373 | DOI | MR | Zbl