@article{TMF_1998_114_3_a1,
author = {S. V. Kryukov},
title = {An analogue of the quantum {Drinfeld{\textendash}Sokolov} {Hamiltonian} reduction for deformed algebras. {The} $U_{q}(\widehat {sl}_{2})$ case},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {337--348},
year = {1998},
volume = {114},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/}
}
TY - JOUR
AU - S. V. Kryukov
TI - An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1998
SP - 337
EP - 348
VL - 114
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/
LA - ru
ID - TMF_1998_114_3_a1
ER -
%0 Journal Article
%A S. V. Kryukov
%T An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 337-348
%V 114
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/
%G ru
%F TMF_1998_114_3_a1
S. V. Kryukov. An analogue of the quantum Drinfeld–Sokolov Hamiltonian reduction for deformed algebras. The $U_{q}(\widehat {sl}_{2})$ case. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/TMF_1998_114_3_a1/
[1] B. Feigin, E. Frenkel, Affine Kač–Moody Algebras at the Critical Level and Gelfand–Dikii Algebras, Preprint Mathematical Sciences Research Institute 04029-91, April, 1991, Berkeley, California, USA | MR
[2] B. Drinfeld, “Quantum Groups”, Proceedings of International Congress of Mathematicians, Berkeley, California, USA, 1986 | MR
[3] E. Frenkel, N. Reshetikhin, Quantum Affine Algebras and Deformation of the Virasoro and $W$-algebras, Preprint, Department of Mathematics, Harvard University, Cambridge, USA, 1995 ; E-print q-alg 9505025 | MR
[4] J. Shiraishi, H. Kubo, H. Awata, S. Odake, A Quantum Deformation of the Virasoro Algebra and the Macdonald Symmetric Functions, Preprint, Department of Mathematics, Harvard University, Cambridge, USA, 1995 ; E-print q-alg 9507034 | MR
[5] B. Feigin, E. Frenkel, Phys. Lett. B, 246:1–2 (1990), 75 ; B. Kostant, S. Steruberg, Ann. Phys., 176 (1987), 49 | DOI | MR | Zbl | DOI | MR | Zbl
[6] E. Frenkel, $W$-algebras and Langland–Drinfeld Correspondence, Preprint, Harvard University, Cambridge, USA, 1991 | MR
[7] V. G. Drinfeld, DAN SSSR, 296:1 (1987), 13
[8] J. Shiraishi, Phys. Lett. A, 171 (1992), 243 | DOI | MR
[9] M. Wakimoto, Commun. Math. Phys., 104 (1986), 605 | DOI | MR | Zbl
[10] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[11] B. Feigin, E. Frenkel, Quantum $W$-algebras and elliptic algebras, E-print hep-th 9508009 | MR
[12] I. B. Frenkel, N. H. Jing, Proc. Nat. Acad. Sci. USA, 85 (1988), 9373 | DOI | MR | Zbl