Averaging the resolvent with a space-correlated random potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 296-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the quasi-particle spectrum in a binary disordered alloy with a space-orrelated random potential is considered. The extended space formalism is used to represent the average resolvent. To calculate the mass operator, some self-consistent approximation procedures are suggested that coincide with the well-known self-consistent approximations for $\alpha =0$ (where $\alpha$ is the short-range order parameter). The elaborated theory ensures the correct passage to the Green's function of a perfect crystal in the limits $\alpha\to 1$ and $\alpha\to -1$ for any concentration and 50 approximations possess the correct analytic properties for all values of the parameter $\alpha$.
@article{TMF_1998_114_2_a5,
     author = {A. K. Arzhnikov and A. A. Bagrets and D. A. Bagrets},
     title = {Averaging the resolvent with a~space-correlated random potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {296--313},
     year = {1998},
     volume = {114},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/}
}
TY  - JOUR
AU  - A. K. Arzhnikov
AU  - A. A. Bagrets
AU  - D. A. Bagrets
TI  - Averaging the resolvent with a space-correlated random potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 296
EP  - 313
VL  - 114
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/
LA  - ru
ID  - TMF_1998_114_2_a5
ER  - 
%0 Journal Article
%A A. K. Arzhnikov
%A A. A. Bagrets
%A D. A. Bagrets
%T Averaging the resolvent with a space-correlated random potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 296-313
%V 114
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/
%G ru
%F TMF_1998_114_2_a5
A. K. Arzhnikov; A. A. Bagrets; D. A. Bagrets. Averaging the resolvent with a space-correlated random potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 296-313. http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/

[1] A. Mookerjee, J. Phys. C, 6:8 (1973), 1340–1349 | DOI

[2] A. Mookerjee, J. Phys. C, 6:10 (1973), L205–L208 | DOI

[3] T. Kaplan, P. L. Leath, L. J. Gray, H. W. Diehl, Phys. Rev. B, 21:10 (1980), 4230–4246 | DOI | MR

[4] A. K. Arzhnikov, S. G. Novokshonov, TMF, 84:1 (1990), 128–140

[5] L. J. Gray, T. Kaplan, Phys. Rev. B, 24:4 (1981), 1872–1882 | DOI

[6] A. K. Arzhnikov, L. V. Dobysheva, S. G. Novokshonov, FMM, 76:5 (1993), 32–39

[7] T. Saha, I. Dasgupta, A. Mookerjee, J. Phys.: Cond. Matt., 6 (1994), L245–L251 | DOI

[8] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. I, Mir, M., 1967 | MR

[9] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[10] A. K. Arzhnikov, L. V. Dobisheva, S. G. Novokshonov, J. Phys: Cond. Matt., 1991, no. 3, 9025–9032 | DOI

[11] R. Mills, P. Ratanavararaksa, Phys. Rev. B, 18:10 (1978), 5291–5308 | DOI

[12] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR