Averaging the resolvent with a~space-correlated random potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 296-313
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the quasi-particle spectrum in a binary disordered alloy with a space-orrelated random potential is considered. The extended space formalism is used to represent the average resolvent. To calculate the mass operator, some self-consistent approximation procedures are suggested that coincide with the well-known self-consistent approximations for $\alpha =0$ (where $\alpha$ is the short-range order parameter). The elaborated theory ensures the correct passage to the Green's function of a perfect crystal in the limits $\alpha\to 1$ and
$\alpha\to -1$ for any concentration and 50 approximations possess the correct analytic properties for all values of the parameter $\alpha$.
@article{TMF_1998_114_2_a5,
author = {A. K. Arzhnikov and A. A. Bagrets and D. A. Bagrets},
title = {Averaging the resolvent with a~space-correlated random potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {296--313},
publisher = {mathdoc},
volume = {114},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/}
}
TY - JOUR AU - A. K. Arzhnikov AU - A. A. Bagrets AU - D. A. Bagrets TI - Averaging the resolvent with a~space-correlated random potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1998 SP - 296 EP - 313 VL - 114 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/ LA - ru ID - TMF_1998_114_2_a5 ER -
%0 Journal Article %A A. K. Arzhnikov %A A. A. Bagrets %A D. A. Bagrets %T Averaging the resolvent with a~space-correlated random potential %J Teoretičeskaâ i matematičeskaâ fizika %D 1998 %P 296-313 %V 114 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/ %G ru %F TMF_1998_114_2_a5
A. K. Arzhnikov; A. A. Bagrets; D. A. Bagrets. Averaging the resolvent with a~space-correlated random potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 296-313. http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a5/