Estimation of the imaginary part of the scattering matrix pole for the three-dimensional Schrödinger equation with a trap potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 271-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for estimating the imaginary part of the scattering matrix resonant pole for the three-dimensional Schrödinger equation with a trap potential. The method is based on the invariance of the wave operators and on the Parseval equality. It is shown that as the barrier height increases, the imaginary part of the scattering matrix resonant pole exponentially tends to zero.
@article{TMF_1998_114_2_a3,
     author = {A. A. Arsen'ev},
     title = {Estimation of the imaginary part of the scattering matrix pole for the three-dimensional {Schr\"odinger} equation with a trap potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {271--276},
     year = {1998},
     volume = {114},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a3/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Estimation of the imaginary part of the scattering matrix pole for the three-dimensional Schrödinger equation with a trap potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 271
EP  - 276
VL  - 114
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a3/
LA  - ru
ID  - TMF_1998_114_2_a3
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Estimation of the imaginary part of the scattering matrix pole for the three-dimensional Schrödinger equation with a trap potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 271-276
%V 114
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a3/
%G ru
%F TMF_1998_114_2_a3
A. A. Arsen'ev. Estimation of the imaginary part of the scattering matrix pole for the three-dimensional Schrödinger equation with a trap potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 271-276. http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a3/

[1] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1966 | Zbl

[2] Resonances: The unifying route towards the formulation of dynamical processes, Lecture Notes in Physics, 325, eds. E. Brandas, N. Elander, Springer-Verlag, Berlin–Heidelberg–New York, 1987 | MR

[3] M. S. Asbaugh, E. M. Harrell, Commun. Math. Phys., 83 (1982), 151–170 | DOI | MR

[4] E. Enghal, E. Brandas, Phys. Rev. A, 37 (1988), 4145–4152 | DOI | MR

[5] S. Albeverio, R. Hoegh-Kron, J. Math. Anal. and Appl., 101 (1984), 491–513 | DOI | MR | Zbl

[6] W. Hunziker, Commun. Math. Phys., 132 (1990), 177–188 | DOI | MR | Zbl

[7] A. A. Arsenev, TMF, 104:2 (1995), 214–232 | MR | Zbl

[8] M. Sh. Birman, S. B. Entina, Izv. AN SSSR. Ser. matem., 31 (1967), 401–430 | MR | Zbl