General solution to the quantum master equation in the finite-dimensional case
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 250-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general solution to the quantum master equation (and its $Sp(2)$ symmetric counterpart) is explicitly constructed in the case of a finite number of variables. It is shown that the finite-dimensional solution is physically trivial and, therefore, cannot be directly extended to a local field theory. Thus, the locality condition is important in obtaining nontrivial physical results when quantizing gauge field theories in the field-antifield formalism.
@article{TMF_1998_114_2_a2,
     author = {I. A. Batalin and I. V. Tyutin},
     title = {General solution to the quantum master equation in the finite-dimensional case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--270},
     year = {1998},
     volume = {114},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a2/}
}
TY  - JOUR
AU  - I. A. Batalin
AU  - I. V. Tyutin
TI  - General solution to the quantum master equation in the finite-dimensional case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 250
EP  - 270
VL  - 114
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a2/
LA  - ru
ID  - TMF_1998_114_2_a2
ER  - 
%0 Journal Article
%A I. A. Batalin
%A I. V. Tyutin
%T General solution to the quantum master equation in the finite-dimensional case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 250-270
%V 114
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a2/
%G ru
%F TMF_1998_114_2_a2
I. A. Batalin; I. V. Tyutin. General solution to the quantum master equation in the finite-dimensional case. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 2, pp. 250-270. http://geodesic.mathdoc.fr/item/TMF_1998_114_2_a2/

[1] J. Zinn-Justin, “Renormalization of gauge theories”, Trends in elementary particle theory, Lecture Notes in Physics, 37, eds. H. Rollnik and K. Dietz, Springer, Berlin, 1975, 2–39

[2] R. E. Kallosh, Pisma v ZhETF, 26 (1977), 575

[3] B. de Wit, J. van Holten, Phys. Lett. B, 79 (1979), 389 | DOI

[4] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102 (1981), 27 | DOI | MR

[5] I. A. Batalin, G. A. Vilkovisky, Phys. Rev. D, 28 (1983), 2567 | DOI | MR

[6] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys., 31 (1990), 1487 | DOI | MR | Zbl

[7] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys., 32 (1991), 532 | DOI | MR | Zbl

[8] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys., 32 (1991), 2513 | DOI | MR

[9] C. M. Hull, Mod. Phys. Lett. A, 5 (1990), 1871 | DOI | MR | Zbl

[10] M. Henneaux, Nucl. Phys. B (Proc. Suppl.), 18A (1990), 47 | DOI | MR | Zbl

[11] G. Barnich, F. Brandt, M. Henneaux, Commun. Math. Phys., 174 (1995), 57 | DOI | MR | Zbl

[12] K. Bering, Acta Universitatis Upsaliensis, 248 (1997), 78

[13] I. V. Tyutin, Sh. S. Shakhverdiev, TMF, 110 (1997), 137 | DOI | MR | Zbl