An approximate two-flow solution to the Boltzmann equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 1, pp. 126-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit approximate solution to the three-dimensional nonlinear Boltzmann equation for rigid spheres is constructed. It has the form of a spatially inhomogeneous linear combination of two Maxwellians corresponding to different densities, temperatures, and mass velocities. It is shown that the integral norm of the discrepancy between the left- and right-hand sides of the equation can be made arbitrarily small by choosing appropriate values of the parameters entering the distribution.
@article{TMF_1998_114_1_a6,
     author = {V. D. Gordevskii},
     title = {An approximate two-flow solution to the {Boltzmann} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {126--136},
     year = {1998},
     volume = {114},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1998_114_1_a6/}
}
TY  - JOUR
AU  - V. D. Gordevskii
TI  - An approximate two-flow solution to the Boltzmann equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1998
SP  - 126
EP  - 136
VL  - 114
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1998_114_1_a6/
LA  - ru
ID  - TMF_1998_114_1_a6
ER  - 
%0 Journal Article
%A V. D. Gordevskii
%T An approximate two-flow solution to the Boltzmann equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1998
%P 126-136
%V 114
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1998_114_1_a6/
%G ru
%F TMF_1998_114_1_a6
V. D. Gordevskii. An approximate two-flow solution to the Boltzmann equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 114 (1998) no. 1, pp. 126-136. http://geodesic.mathdoc.fr/item/TMF_1998_114_1_a6/

[1] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978

[2] T. Karleman, Matematicheskie zadachi kineticheskoi teorii gazov, IIL, M., 1960 | MR

[3] R. S. Krupp, Magister Sciences thesis, MiT, 1967

[4] A. V. Bobylev, Dokl. AN SSSR, 225:6 (1975), 1296–1299 | MR | Zbl

[5] A. V. Bobylev, Dokl. AN SSSR, 231:3 (1976), 571–574 | MR | Zbl

[6] M. Krook, T. Wu, Phys. Fluids, 20:10(1) (1977), 1589–1595 | DOI | Zbl

[7] A. A. Nikolskii, Dokl. AN SSSR, 151:2 (1963), 299–302

[8] E. Ikenberry, C. Truesdall, Ration Mech. and Anal., 5:1 (1956), 1–129 | MR

[9] V. S. Galkin, Prikl. matem. i mekh., 20:3 (1956), 445–446 | MR

[10] H. M. Ernst, J. Stat. Phys., 34:5/6 (1984), 1001–1017 | DOI | MR

[11] A. V. Bobylev, Dokl. AN SSSR, 251:6 (1980), 1361–1365 | MR

[12] V. V. Vedenyapin, Dokl. AN SSSR, 256:2 (1981), 338–342 | MR

[13] D. Ya. Petrina, A. V. Mischenko, Dokl. AN SSSR, 298:2 (1988), 338–342 | MR | Zbl

[14] A. V. Mischenko, D. Ya. Petrina, TMF, 77:1 (1988), 135–153 | MR

[15] I. E. Tamm, Trudy FIAN, 29, 1965, 239–249

[16] V. D. Gordevskii, Matem. fiz., analiz, geom., 2:2 (1995), 168–176 | MR | Zbl

[17] V. D. Gordevskii, Matem. fiz., analiz, geom., 4:1/2 (1997), 1–12 | MR

[18] A. Sakurai, J. Fluid Mech., 3 (1957), 255–260 | DOI | MR | Zbl

[19] R. Narasimha, S. M. Deshpande, J. Fluid Mech., 36:3 (1969), 555–570 | DOI | Zbl

[20] S. M. Deshpande, R. Narasimha, J. Fluid Mech., 36:3 (1969), 545–554 | DOI | Zbl

[21] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1964

[22] M. F. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR