Tensor-tensor model of gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 448-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main problem with the standard gauge theory of the Poincaré group, realized as a subgroup of $GL(5,R)$, is the appearance of fields connected with non-Lorentz symmetries and whose physical sense is unclear. In this paper, we treat the Poincaré gauge fields as new, Yang–Mills-type tensor fields and gravity as a Higgs–Goldstone field. In this case, the effective metric tensor for matter is a hybrid of two tensor fields. It is shown that in the linear approximation, the massive translation gauge field can give the Yukava-type correction to Newton's potential. Also, corrections to the standard Einstein post-Newtonian formulae for light deflection and radar echo delay are obtained. A spherically symmetrical solution to the equations of translation gauge fields is found. The translation gauge field leads to the existence of a singular surface inside the Schwarzschild sphere that is impenetrable to matter and can prevent gravitational collapse of a massive body.
@article{TMF_1997_113_3_a7,
     author = {M. Gogberashvili},
     title = {Tensor-tensor model of gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--460},
     year = {1997},
     volume = {113},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a7/}
}
TY  - JOUR
AU  - M. Gogberashvili
TI  - Tensor-tensor model of gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 448
EP  - 460
VL  - 113
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a7/
LA  - ru
ID  - TMF_1997_113_3_a7
ER  - 
%0 Journal Article
%A M. Gogberashvili
%T Tensor-tensor model of gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 448-460
%V 113
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a7/
%G ru
%F TMF_1997_113_3_a7
M. Gogberashvili. Tensor-tensor model of gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 448-460. http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a7/

[1] F. Hehl, J. Mc Crea, E. Mielke, Y. Ne'eman, Phys. Rep., 258 (1995), 1 | DOI | MR

[2] W. Drechler, M. Mayer, “Fiber Bundle Techniques in Gauge Theories”, Lecture Notes in Physics, 67, Springer, Berlin, 1977 | DOI | MR

[3] D. Ivanenko, G. Sardanashvily, Phys. Rep., 94 (1983), 1 | DOI | MR

[4] G. Sardanashvily, O. Zakharov, Gauge Gravitation Theory, World Scientific, Singapore, 1992 | MR

[5] M. Gogberashvili, E-print gr-qc/9604018

[6] G. Sardanashvily, M. Gogberashvili, Mod. Phys. Lett. A, 2 (1987), 609 | DOI

[7] G. Sardanashvily, M. Gogberashvili, Ann. Phys. (DDR), 45 (1988), 297 | DOI | MR

[8] G. A. Sardanashvili, M. Ya. Gogberashvili, Eksperimentalnye testy teorii gravitatsii, Izd. Moskovskogo universiteta, M., 1989

[9] D. Edelen, Int. J Theor. Phys., 28 (1989), 633 ; 33 (1994), 1315 | DOI | MR | Zbl | DOI | MR | Zbl

[10] C. Will, Theory and Experiment in Gravitational Physics, Cambridge Univ. Press, Cambridge, 1993 | MR

[11] A. Kadić, D. Edelen, “A Gauge Theory of Dislocations and Disclinations”, Lecture Notes in Physics, 174, Springer, Berlin, 1983 | DOI | MR

[12] D. G. B. Edelen, D. C. Lagoudas, Gauge Theory and Defects in Solids, North-Holland, Amsterdam, 1988 | MR | Zbl

[13] A. A. Logunov, M. A. Mestvirishvili, Osnovy relyativistskoi teorii gravitatsii, Izd. Moskovskogo universiteta, M., 1986

[14] E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, S. Aronson, Ann. Phys., 182 (1988), 1 | DOI

[15] R. Sanders, Astron. Astroph., 154 (1986), 135

[16] S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972