Spectral properties of Hamiltonians with magnetic field under fixation of pseudomomentum. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 413-431 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that the energy operator of an $n$-particle neutral system in a homogeneous magnetic field with a fixed pseudomomentum can be written as some operator in the space of relative motion. For this operator, the HVZ-theorem for the localization of the essential spectrum is proved, accounting for the permutational symmetry for any $n\geq 2$. For $n=2$, the conditions of finiteness and infinity of the discrete spectrum and spectral asymptotic behavior are found. The result can be applied, in particular, to the Hamiltonian of the hydrogen atom in the homogeneous magnetic field.
@article{TMF_1997_113_3_a4,
     author = {S. A. Vugal'ter and G. M. Zhislin},
     title = {Spectral properties of {Hamiltonians} with magnetic field under fixation of {pseudomomentum.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--431},
     year = {1997},
     volume = {113},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a4/}
}
TY  - JOUR
AU  - S. A. Vugal'ter
AU  - G. M. Zhislin
TI  - Spectral properties of Hamiltonians with magnetic field under fixation of pseudomomentum. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1997
SP  - 413
EP  - 431
VL  - 113
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a4/
LA  - ru
ID  - TMF_1997_113_3_a4
ER  - 
%0 Journal Article
%A S. A. Vugal'ter
%A G. M. Zhislin
%T Spectral properties of Hamiltonians with magnetic field under fixation of pseudomomentum. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1997
%P 413-431
%V 113
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a4/
%G ru
%F TMF_1997_113_3_a4
S. A. Vugal'ter; G. M. Zhislin. Spectral properties of Hamiltonians with magnetic field under fixation of pseudomomentum. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 113 (1997) no. 3, pp. 413-431. http://geodesic.mathdoc.fr/item/TMF_1997_113_3_a4/

[1] J. E. Avron, J. W. Herbst, B. Simon, Ann. Phys., 114 (1978), 431 | DOI | MR | Zbl

[2] G. M. Zhislin, Algebra i analiz, 8:1 (1996), 127–136 | MR | Zbl

[3] S. A. Vugalter, G. M. Zhislin, TMF, 97:1 (1993), 94–112 | MR | Zbl

[4] G. Zhislin, Preprint ESI No 166, Wienn, 1994

[5] M. A. Antonets, G. M. Zhislin, I. A. Shereshevskii, Prilozhenie k kn.: K. Iorgens, I. Vaidman, Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976 | MR

[6] S. A. Vugalter, G. M. Zhislin, Rep. Math. Phys., 19 (1984), 39–90 | DOI | MR | Zbl

[7] A. Jensen, S. Nakamura, The 2D Schrödinger equation for a neutral pair in a constant magnetic field, Preprint R-96-2017, Aalborg University, 1996 | MR

[8] S. A. Vugalter, G. M. Zhislin, Algebra i analiz, 5:2 (1993), 108–125 | MR | Zbl

[9] W. Kirsch, B. Simon, Ann. of Phys., 183:1 (1988), 122–130 | DOI | MR | Zbl

[10] V. Ya. Ivrii, DAN SSSR, 276:2 (1984), 268–270 | MR | Zbl

[11] S. A. Vugalter, G. M. Zhislin, Algebra i analiz, 3:6 (1991), 119–154 | MR | Zbl

[12] S. A. Vugalter, G. M. Zhislin, TMF, 55:1 (1983), 66–77 | MR